Skip to main content

Adaptive Trajectory Controller for Generic Fixed-Wing Unmanned Aircraft

  • Conference paper
Advances in Aerospace Guidance, Navigation and Control

Abstract

This work deals with the construction of a nonlinear adaptive trajectory controller, which is easily applicable to a multitude of fixed wing unmanned aircraft. Given a common signal interface, the adaptive trajectory controller is divided into a generic part, which is common for each vehicle, and into a part, which is unique. The generic part of the control architecture bases on a common inversion model which is used for feedback linearization. However, the dynamics of the aircraft and the inversion model differ, thus introducing model uncertainties to the feedback linearized system. The effect of modeling uncertainties is reduced by the application of a concurrent learning model reference adaptive controller, which uses neural networks in order to approximate the uncertainty. Leveraging instantaneous as well as stored data concurrently for adaptation ensures convergence of the adaptive parameters to a set of optimal weights, which minimize the approximation error. Performance and robustness against certain model uncertainties is shown through numerical simulation for two significantly different unmanned aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Åström, K.J., Wittenmark, B.: Adaptive control, 2nd edn. Dover Publications, Mineola (2008)

    Google Scholar 

  2. Bierling, T., Höcht, L., Holzapfel, F., Maier, R., Wildschek, A.: Comparative analysis of mrac architectures in a unified framework. In: AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2010)

    Google Scholar 

  3. Brockhaus, R., Alles, W., Luckner, R.: Flugregelung, 3rd edn. Springer, Berlin (2010)

    Google Scholar 

  4. Calise, A.J., Rysdyk, R.T.: Nonlinear adaptive flight control using neural networks. IEEE Control Systems Magazine 18(6), 14–25 (1998)

    Article  Google Scholar 

  5. Chowdhary, G.: Concurrent Learning for convergence in Adaptive Control without Persistency of Excitation. PhD thesis, Georgia Insitute of Technology, Atlanta and GA (2010)

    Google Scholar 

  6. Chowdhary, G., Jategaonkar, R.: Aerodynamic parameter estimation from flight data applying extended and unscented kalman filter. Aerospace Science and Technology 14(2), 106–117 (2010)

    Article  Google Scholar 

  7. Chowdhary, G., Johnson, E.: Flight test validation of a neural network based long term learning adaptive flight controller. In: AIAA Guidance, Navigation, and Control Conference. Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2009)

    Google Scholar 

  8. Chowdhary, G., Johnson, E.N.: A singular value maximizing data recording algorithm for concurrent learning. In: American Control Conference, San Francisco, CA (June 2011)

    Google Scholar 

  9. Edwards, C., Lombaerts, T., Smaili, H.: Fault tolerant flight control: A benchmark challenge. Springer, Berlin (2010)

    Book  Google Scholar 

  10. Gelb, A.: Applied optimal estimation. M.I.T. Press, Cambridge (1974)

    Google Scholar 

  11. Holzapfel, F.: Nichtlineare adaptive Regelung eines unbemannten Fluggerätes. PhD thesis, Technische Universität München, Munich (2004)

    Google Scholar 

  12. Ioannou, P.A., Kokotovic, P.V.: Instability analysis and improvement of robustness of adaptive control. Automatica 20(5), 583–594 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, E.N.: Limited Authority Adaptive Flight Control. PhD thesis, Georgia Insitute of Technology, Atlanta and GA (2000)

    Google Scholar 

  14. Lewis, F.L.: Nonlinear network structures for feedback control. Asian Journal of Control 1(4), 205–228 (1999)

    Article  Google Scholar 

  15. Monahemi, M.M., Krstic, M.: Control of wing rock motion using adaptive feedback linearization. Journal of Guidance, Control, and Dynamics 19(4), 905–912 (1996)

    Article  MATH  Google Scholar 

  16. Mühlegg, M., Johnson, E., Chowdhary, G.: Concurrent learning adaptive control of linear systems with noisy measurements. In: AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-located Conferences. American Institute of Aeronautics and Astronautics (2012)

    Google Scholar 

  17. Narendra, K., Annaswamy, A.: A new adaptive law for robust adaptation without persistent excitation. IEEE Transactions on Automatic Control 32(2), 134–145 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narendra, K.S., Annaswamy, A.M.: Stable adaptive systems. Dover Publications, Mineola (2005)

    MATH  Google Scholar 

  19. Nguyen, N.T., Jacklin, S.A.: Neural net adaptive flight control stability. In: Verification and Validation Challenges, and Future Research, IJCNN Conference (2007)

    Google Scholar 

  20. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991)

    Article  Google Scholar 

  21. Sanner, R.M., Slotine, J.-J.E.: Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks 3(6), 837–863 (1992)

    Article  Google Scholar 

  22. Seanor, B.A.: Flight Testing of a Remotely Piloted Vehicle for Aircraft Parameter Estimation Purposes. PhD thesis, West Virginia University, Morgantown and West Virginia (2002)

    Google Scholar 

  23. Shankar, P., Yedavalli, R.K., Burken, J.J.: Self-organizing radial basis function networks for adaptive flight control. Journal of Guidance, Control, and Dynamics 34(3), 783–794 (2011)

    Article  Google Scholar 

  24. Cong, S., Song, R.: An improved b-spline fuzzy-neural network controller, pp. 1713–1717

    Google Scholar 

  25. Stevens, B.L., Lewis, F.L.: Aircraft control and simulation, 2nd edn. J. Wiley, Hoboken (2003)

    Google Scholar 

  26. Tao, G.: Adaptive control design and analysis. Wiley-Interscience, Hoboken (2003)

    Book  MATH  Google Scholar 

  27. Verhaegen, M., Kanev, S., Hallouzi, R., Jones, C., Maciejowski, J., Smail, H.: Fault tolerant flight control - a survey. In: Morari, M., Thoma, M., Edwards, C., Lombaerts, T., Smaili, H. (eds.). LNCIS, pp. 47–89. Springer, Heidelberg (2010)

    Google Scholar 

  28. Volyanskyy, K.Y., Haddad, W.M., Calise, A.J.: A new neuroadaptive control architecture for nonlinear uncertain dynamical systems: Beyond sigma - and e-modifications. IEEE Transactions on Neural Networks 20(11), 1707–1723 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Mühlegg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mühlegg, M., Dauer, J.C., Dittrich, J., Holzapfel, F. (2013). Adaptive Trajectory Controller for Generic Fixed-Wing Unmanned Aircraft. In: Chu, Q., Mulder, B., Choukroun, D., van Kampen, EJ., de Visser, C., Looye, G. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38253-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38253-6_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38252-9

  • Online ISBN: 978-3-642-38253-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics