All-Optical Ultrafast Switching and Logic with Bacteriorhodopsin Protein

  • Sukhdev Roy
  • Chandresh Yadav
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


We present a detailed analysis of all-optical ultrafast switching with the unique photochromic bacteriorhodopsin (bR) protein, based on its early transitions (B570 →I460), in the pump-probe configuration. The transmission of a cw probe laser beam at 460 nm through bR is switched by a pulsed pump beam at 570 nm with high contrast and sub-ps switching. The effect of pump intensity, pump pulse width, absorption cross-section and lifetime of the I460 state on the switching characteristics has been studied in detail. Theoretical simulations are in good agreement with reported experimental results. The results have been used to design ultrafast all-optical NOT and the universal NOR and NAND logic gates with multiple pump laser pulses. The analysis demonstrates the applicability of bR for all-optical ultrafast operations in the simple pump-probe geometry and opens up exciting prospects for its use in optical supercomputing.


all-optical switching ultrafast information processing optical computing logic gates bacteriorhodopsin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roy, S.: Editorial, Special Issue on Optical Computing Circuits, Devices and Systems. IET Circ., Dev. and Syst. 5, 73–75 (2011)CrossRefGoogle Scholar
  2. 2.
    Caulfield, H.J., Dolev, S.: Why future supercomputing requires optics? Nature Photon. 4, 261–263 (2010)CrossRefGoogle Scholar
  3. 3.
    Haque, S.A., Nelson, J.: Toward organic all-optical switching. Science 327, 1466–1467 (2010)CrossRefGoogle Scholar
  4. 4.
    Szacilowski, K.: Digital information processing in molecular systems. Chem. Rev. 108, 3481–3548 (2008)CrossRefGoogle Scholar
  5. 5.
    DeSilva, A.P.: Molecular Computing: A layer of logic. Nature 454, 417–418 (2008)CrossRefGoogle Scholar
  6. 6.
    Roy, S., Yadav, C.: All-optical ultrafast logic gates based on saturable to reverse saturable absorption transition in CuPc-doped PMMA thin films. Opt. Commun. 284, 4435–4440 (2011)CrossRefGoogle Scholar
  7. 7.
    Hampp, N.: Bacteriorhodopsin as a photochromic retinal protein for optical memories. Chem. Rev. 100, 1755–1776 (2000)CrossRefGoogle Scholar
  8. 8.
    Lukashev, E.P., Robertson, B.: Bacteriorhodopsin retains its light-induced proton pumping function after being heated to 1400C. Bioelectrochem. Bioenerg. 37, 157–160 (1995)CrossRefGoogle Scholar
  9. 9.
    Stuart, J.A., Mercy, D.L., Wise, K.J., Birge, R.R.: Volumetric optical memory based on bacteriorhodopsin. Synth. Metals 127, 3–15 (2002)CrossRefGoogle Scholar
  10. 10.
    Singh, C.P., Roy, S.: All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates. Optics Commun. 218, 55–66 (2003)CrossRefGoogle Scholar
  11. 11.
    Chen, G., Lu, W., Xu, X., Tian, J., Zhang, C.: All-optical time-delay switch based on grating buildup time of two-wave mixing in a bacteriorhodopsin film. Appl. Opt. 48, 5205–5211 (2009)CrossRefGoogle Scholar
  12. 12.
    Rao, D.V.G.L.N., Aranda, F.J., Rao, D.N., Chen, Z., Akkara, J.A., Kaplan, D.L., Nakashima, M.: All-optical logic gates with bacteriorhodopsin films. Opt. Commun. 127, 193–199 (1996)CrossRefGoogle Scholar
  13. 13.
    Joseph, J., Aranda, F.J., Rao, D.V.G.L.N., DeCristofano, B.S.: Optical computing and information processing with protein complex. Opt. Memory Neural Netw. 6, 275–285 (1997)zbMATHGoogle Scholar
  14. 14.
    Zhang, T., Zhang, C., Fu, G., Li, Y., Gu, L., Zhang, G., Song, Q.W., Parsons, B., Birge, R.R.: All-optical logic gates using bacteriorhodopsin films. Opt. Eng. 39, 527–534 (2000)CrossRefGoogle Scholar
  15. 15.
    Li, Y., Sun, Q., Tian, J., Zhang, G.: Optical boolean logic gates based on degenerate multi-wave mixing in bR films. Opt. Mater. 23, 285–288 (2003)CrossRefGoogle Scholar
  16. 16.
    Roy, S., Singh, C.P., Reddy, K.P.J.: Generalized model for all-optical light modulation in bacteriorhodopsin. J. Appl. Phys. 90, 3679–3689 (2001)CrossRefGoogle Scholar
  17. 17.
    Sharma, P., Roy, S.: Effect of probe beam intensity on all-optical switching based on excited-state absorption. Opt. Mat. Exp. 2, 548–565 (2012)CrossRefGoogle Scholar
  18. 18.
    Huang, Y., Wu, S., Zhao, Y.: All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics. Opt. Exp. 12, 895–906 (2004)CrossRefGoogle Scholar
  19. 19.
    Roy, S., Prasad, M., Topolancik, J., Vollmer, F.: All-optical switching with bacteriorhodopsin protein coated microcavities and its application to low power computing circuits. J. Appl. Phys. 107, 053115-1–053115-9 (2010)Google Scholar
  20. 20.
    Roy, S., Sethi, P., Topolancik, J., Vollmer, F.: All-optical reversible logic gates with optically controlled bacteriorhodopsin protein-coated microresonators. Adv. Opt. Technol. 2012, 727206-12 (2012)Google Scholar
  21. 21.
    Der, A., Valkai, S., Fabian, L., Ormos, P., Ramsden, J.J., Wolff, E.K.: Integrated optical switching based on the protein bacteriorhodopsin. Photochem. Photobio. 83, 393–396 (2007)CrossRefGoogle Scholar
  22. 22.
    Fabian, L., Wolff, E.K., Oroszi, L., Ormos, P., Der, A.: Fast integrated optical switching by the protein bacteriorhodopsin. Appl. Phys. Lett. 97, 0233051-3 (2010)Google Scholar
  23. 23.
    Petrich, J.W., Breton, J., Martin, J.L., Antonetti, A.: Femtosecond absorption spectroscopy of light-adapted and dark-adapted bacteriorhodopsin. Chem. Phys. Lett. 137, 369–375 (1987)CrossRefGoogle Scholar
  24. 24.
    Mathies, R.A., Cruz, C.H.B., Pollard, W.T.: Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 240, 777–779 (1988)CrossRefGoogle Scholar
  25. 25.
    Dobler, J., Zinth, W., Kaiser, W., Oesterhelt, D.: Excited-State reaction dynamics of bacteriorhodopsin studied by femtosecond spectroscopy. Chem. Phys. Lett. 144, 215–220 (1988)CrossRefGoogle Scholar
  26. 26.
    Ye, T., Friedman, N., Gat, Y., Atkinson, G.H., Sheves, M., Ottolenghi, M., Ruhman, S.: On the nature of the primary light-induced events in bacteriorhodopsin: Ultrafast spectroscopy of native and C13 = C14 locked Pigments. J. Phys. Chem. B 103, 5122–5130 (1999)CrossRefGoogle Scholar
  27. 27.
    Aharoni, A., Hou, B., Friedman, N., Ottolenghi, M., Rousso, I., Ruhman, S., Sheves, M., Ye, T., Zhang, Q.: Non-isomerizable artificial pigments: Implications for the primary light-induced events in bacteriorhodopsin. Biochem. 66, 1210–1219 (2001)Google Scholar
  28. 28.
    Kobayashi, T., Yabushita, A., Saito, T., Ohtani, H.: Real time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Nature 414, 531–534 (2001)CrossRefGoogle Scholar
  29. 29.
    Kobayashi, T., Yabushita, A., Saito, T., Ohtani, H., Tsuda, M.: Sub-5 fs-real time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Photochem. Photobio. 83, 363–368 (2007)CrossRefGoogle Scholar
  30. 30.
    Yishi, W., Sheng, Z., Xicheng, A., Kunsheng, H., JianPing, Z.: Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Chin. Sci. Bull. 53, 1972–1977 (2008)CrossRefGoogle Scholar
  31. 31.
    Yabushita, A., Kobayashi, T.: Primary conformation change in bacteriorhodopsin on photoexcitation. Biophys. J. 96, 1447–1461 (2009)CrossRefGoogle Scholar
  32. 32.
    Briand, J., Leonard, J., Haacke, S.: Ultrafast photo-induced reaction dynamics in bacteriorhodopsin and its Trp mutants. J. Opt. 12, 1–14 (2010)CrossRefGoogle Scholar
  33. 33.
    Abramczyk, H.: Mechanisms of energy dissipation and ultrafast primary events in photostable systems: H-bond, excess electron, biological photoreceptors. Vibrational Spectroscopy 58, 1–11 (2012)CrossRefGoogle Scholar
  34. 34.
    Fabian, L., Heiner, Z., Mero, M., Kiss, M., Wolff, E.K., Ormos, P., Osvay, K., Der, A.: Protein based ultrafast photonic switching. Opt. Exp. 19, 18861–18870 (2011)CrossRefGoogle Scholar
  35. 35.
    Biesso, A., Qian, W., Sayed, M.: Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodospin. J. Am. Chem. Soc. 130, 3258–3259 (2007)CrossRefGoogle Scholar
  36. 36.
    Cheng, C., Lee, Y., Chu, L.: Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactants treatments. Chem. Phys. Lett. 539-540, 151–156 (2012)Google Scholar
  37. 37.
    Wu, P., Rao, D.V.G.L.N., Kimball, B.R., Nakashima, M., DeCristofano, B.S.: Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films. Appl. Phys. Lett. 81, 3888–3890 (2002)CrossRefGoogle Scholar
  38. 38.
    Prokhorenko, V., Halpin, A., Johnson, P., Miller, R., Brown, L.: Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime. J. Chem. Phys. 134, 085105(1–5) (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sukhdev Roy
    • 1
  • Chandresh Yadav
    • 1
  1. 1.Department of Physics and Computer ScienceDayalbagh Educational InstituteIndia

Personalised recommendations