All-Optical XOR Gate for QPSK In-Phase and Quadrature Components Based on Periodically Poled Lithium Niobate Waveguide for Photonic Coding and Error Detection Applications

  • Emma Lazzeri
  • Antonio Malacarne
  • Giovanni Serafino
  • Antonella Bogoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


An all-optical scheme based on periodically poled lithium Niobate waveguide (PPLN) for signal processing of the in-phase (I) and quadrature (Q) components of an input quadrature phase shift keying (QPSK) signal is presented. The device is able to work on the I and Q components without any additional demodulation stage and makes use of cascaded second harmonic and difference frequency generation (SHG and DFG respectively) in the PPLN waveguide to obtain the logical operation XOR(I,Q). A single continuous wave pump signal is needed in addition to the input signal to generate the output signal, in which the information is coded in a binary phase shift keying (BPSK) modulation. The logical XOR(I,Q) is a basic operation that can enable data coding and error detection in all-optical networks. Bit error rate measurements are provided to evaluate the system performance for a 20Gb/s DQPSK input signal, and tunability of the output signal wavelength has been attested with almost constant optical signal-to-noise-ratio (OSNR) penalty along the C-band.


Periodically Poled Lithium Niobate Waveguide Quadrature Phase Shift Keying All-Optical Processing XOR Coding Error Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oxenløwe, L.K., Ji, H., Galili, M., Pu, M., Hu, H., Mulvad, H.C.H., Yvind, K., Hvam, J.M., Clausen, A.T., Jeppesen, P.: Silicon Photonics for Signal Processing of Tbit/s Serial Data Signals. IEEE Journal of Selected Topics in Quantum Electronics 18(2), 996–1005 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, Z., Huang, Y.-K., Deng, Y., Chang, J., Prucnal, P.R.: Optical Encryption With OCDMA Code Swapping Using All-Optical XOR Logic Gate. IEEE Photonics Technology Letters 21(7), 411–413 (2009)CrossRefGoogle Scholar
  3. 3.
    Aikawa, Y., Shimizu, S., Uenohara, H.: Demonstration of All-Optical Divider Circuit Using SOA-MZI-Type XOR Gate and Feedback Loop for Forward Error Detection. Journal of Lightwave Technology 29(15), 2259–2266 (2011)CrossRefGoogle Scholar
  4. 4.
    Porzi, C., Scaffardi, M., Potì, L., Bogoni, A.: Optical Digital Signal Processing in a Single SOA Without Assist Probe Light. IEEE Journal of Selected Topics in Quantum Electronics 16(5), 1469–1475 (2010)CrossRefGoogle Scholar
  5. 5.
    Chan, K., Chan, C.K., Chen, L.K., Tong, F.: Demonstration of 20-Gb/s all-optical XOR gate by fourwavemixing in semiconductor optical amplifier with RZ-DPSK modulated inputs. IEEE Photon. Technol. Lett. 16, 897–899 (2004)CrossRefGoogle Scholar
  6. 6.
    Yu, C., Christen, L., Luo, T., Wang, Y., Pan, Z., Yan, L.-S., Willner, A.E.: All-optical XOR gate using polarization rotation in single highly nonlinear fiber. IEEE Photonics Technology Letters 17(6), 1232–1234 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, J., Sun, Q., Sun, J., Zhang, X.: Experimental demonstration on 40 Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber. Optics Communications 282(13) (July 2009)Google Scholar
  8. 8.
    Wang, J., Sun, J.: All-optical logic XOR gate for high-speed CSRZ-DPSK signals based on cSFG/DFG in PPLN waveguide. Electronics Letters 46(4), 288–290 (2010)CrossRefGoogle Scholar
  9. 9.
    Kong, D., Li, Y., Wang, H., Zhang, X., Zhang, J., Wu, J., Lin, J.: All-Optical XOR Gates for QPSK Signals Based on Four-Wave Mixing in a Semiconductor Optical Amplifier. IEEE Photonics Technology Letters 24(12), 988–990 (2012)CrossRefGoogle Scholar
  10. 10.
    Umeki, T., Asobe, M., Nishida, Y., Tadanaga, O., Magari, K., Yanagawa, T., Suzuki, H.: Highly efficient +5-dB parametric gain conversion using direct-bonded PPZnLN ridge waveguide. IEEE Photon. Technol. Lett. 20(1), 15–17 (2008)CrossRefGoogle Scholar
  11. 11.
    Hu, H., Suche, H., Ludwig, R., Huettl, B., Schmidt-Langhorst, C., Nouroozi, R., Sohler, W., Schubert, C.: Polarization insensitive all-optical wavelength conversion of 320 Gb/s RZ-DQPSK data signals. In: Proc. OFC, March 22-26 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma Lazzeri
    • 1
  • Antonio Malacarne
    • 2
  • Giovanni Serafino
    • 1
  • Antonella Bogoni
    • 2
  1. 1.TeCIP, Scuola Superiore Sant’AnnaPisaItaly
  2. 2.CNITPisaItaly

Personalised recommendations