To What Extent Is Zero Energy Computing Feasible?

  • Joseph Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


Various data handling processes can be implemented without involving energy dissipation. However, these processes execute only part of a complete computing task and the remaining part will involve the loss of energy. This paper discusses some misleading concepts of reversible logic and presents a novel approach toward optical architectures with reduced energy consumption.


Logic Operation Logic Gate Control Channel Data Channel Waveguide Coupler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17, 525–532 (1973)zbMATHCrossRefGoogle Scholar
  3. 3.
    Feynman, R.P.: Quantum mechanical computing. Optics News 11, 11–20 (1985)CrossRefGoogle Scholar
  4. 4.
    Fredkin, E., Toffoli, T.: Conservative Logic. Int. J. Theoret. Phys. 21, 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Shamir, J., Caulfield, H.J., Miceli, W., Seymour, R.J.: Optical Computing and the Fredkin Gate. Appl. Opt. 25, 1604–1607 (1986)CrossRefGoogle Scholar
  6. 6.
    Hardy, J., Shamir, J.: Optics inspired logic architecture. Optics Express 15(1), 150–165 (2007)CrossRefGoogle Scholar
  7. 7.
    Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Express 19, 5241 (2011)Google Scholar
  8. 8.
    Zhang, L., Ji, R.Q., Jia, L.X., Yang, L., Zhou, P., Tian, Y.H., Chen, P., Lu, Y.Y., Jiang, Z.Y., Liu, Y.L., Fang, Q., Yu, M.B.: Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators. Opt. Lett. 35, 1620 (2010)CrossRefGoogle Scholar
  9. 9.
    Tian, Y.H., Zhang, L., Ji, R.Q., Yang, L., Zhou, P., Chen, H.T., Ding, J.F., Zhu, W.W., Lu, Y.Y., Jia, L.X., Fang, Q., Yu, M.B.: Proof of concept of directed OR/NOR and AND/NAND logic circuit consisting of two parallel microring resonators. Opt. Lett. 36, 1650 (2011)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Ji, R.Q., Tian, Y.H., Yang, L., Zhou, P., Lu, Y.Y., Zhu, W.W., Liu, Y.L., Jia, X.L., Fang, Q., Yu, M.B.: Simultaneous implementation of XOR and XNOR operations using a directed logic circuit based on two microring resonators. Opt. Express 19, 6524 (2011)CrossRefGoogle Scholar
  11. 11.
    Papaioannou, S., Vyrsokinos, K., Tsilipakos, O., Pitilakis, A., Hassan, K., Weeber, J.-C., Markey, L., Dereux, A., Bozhevolnyi, S.I., Miliou, A., Kriezis, E.E., Pleros, N.: A 320 Gb/s-Throughput Capable 2x2 Silicon-Plasmonic Router Architecture for Optical Interconnects. J. Lightwave Tech. 29(21) (November 2011)Google Scholar
  12. 12.
    Shamir, J., Caulfield, H.J.: High-efficiency rapidly programmable optical interconnections. Appl. Opt. 26, 1032–1037 (1987)CrossRefGoogle Scholar
  13. 13.
    Shamir, J.: Three-dimensional optical interconnection gate array. Appl. Opt. 26, 3455–3457 (1987)CrossRefGoogle Scholar
  14. 14.
    Mirsalehi, M.M., Shamir, J., Caulfield, H.J.: Residue arithmetic processing utilizing optical Fredkin gate arrays. Appl. Opt. 26, 3940–3946 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Joseph Shamir
    • 1
  1. 1.Department of Electrical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations