Advertisement

An Optical Polynomial Time Solution for the Satisfiability Problem

  • Sama Goliaei
  • Saeed Jalili
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)

Abstract

In this paper, we have used optics to solve the satisfiability problem. The satisfiability problem is a well-known NP-complete problem in computer science, having many real world applications, which no polynomial resources solution is found for it, yet. The provided method in this paper, is based on forming patterns on photographic films iteratively to solve a given satisfiability problem in efficient time. The provided method requires polynomial time, but, exponential length films and exponential amount of energy to solve the satisfiability problem.

Keywords

Optical Computing Unconventional Computing Optical Problem Solving Satisfiability problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press (2001)Google Scholar
  2. 2.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, pp. 151–158. ACM (1971)Google Scholar
  3. 3.
    Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  4. 4.
    Ganai, M., Gupta, A.: SAT-Based Scalable Formal Verification Solutions, 1st edn. Springer (2007)Google Scholar
  5. 5.
    Paturi, R., Pudlak, P.: On the complexity of circuit satisfiability. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, pp. 241–250. ACM (2010)Google Scholar
  6. 6.
    Wen-Zhang, L., Jing-Fu, Z., Gui-Lu, L.: A parallel quantum algorithm for the satisfiability problem. Communication in Theoretical Physics 49(3), 629–630 (2008)CrossRefGoogle Scholar
  7. 7.
    Johnson, C.R.: Automating the DNA computer: Solving n-variable 3-SAT problems. Natural Computing 7(2), 239–253 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Cecilia, J.M., García, J.M., Guerrero, G.D., del Amor, M.A.M., Pérez-Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution to SAT by using GPUs. The Journal of Logic and Algebraic Programming 79(6), 317–325 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Goliaei, S., Jalili, S.: An optical wavelength-based solution to the 3-SAT problem. In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 77–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Goliaei, S., Jalili, S.: An optical solution to the 3-SAT problem using wavelength based selectors. International Journal of Supercomputing 62, 663–672 (2012)CrossRefGoogle Scholar
  11. 11.
    Dolev, S., Fitoussi, H.: Masking traveling beams: Optical solutions for NP-complete problems, trading space for time. Theoretical Computer Science 411, 837–853 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Oltean, M., Muntean, O.: An optical solution for the SAT problem. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 53–62. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Head, T.: Parallel computing by xeroxing on transparencies. In: Condon, A., et al. (eds.) Algorithmic Bioprocesses. Natural Computing Series, pp. 631–637. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Goliaei, S., Jalili, S., Salimi, J.: Light-based solution for the dominating set problem. Applied Optics 51(29), 6979–6983 (2012)CrossRefGoogle Scholar
  15. 15.
    Goliaei, S., Jalili, S.: Optical graph 3-colorability. In: Dolev, S., Oltean, M. (eds.) OSC 2010. LNCS, vol. 6748, pp. 16–22. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sama Goliaei
    • 1
  • Saeed Jalili
    • 1
  1. 1.Electrical and Computer Engineering DepartmentTarbiat Modares UniversityTehranIran

Personalised recommendations