Optical Energy Efficient Asynchronous Automata and Circuits

  • Amir Anter
  • Shlomi Dolev
  • Joseph Shamir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)


An optical architecture for energy efficient asynchronous automata is suggested. We use a logical paradigm called “Directed Logic”, based on the most basic reversible and energy efficient gate, the Fredkin gate. Directed Logic circuits for basic boolean gates as NOT, OR/NOR and AND/NAND are used. These circuits are then employed for an optical energy efficient automata. A D latch is then used to define the automata operation cycle. A set-reset latch is used as part of an handshake protocol that suggests an optical energy efficient automata operating internally in an asynchronous fashion. Lastly, we propose a circuit for asynchronous cascading between two automata.


Optical Logic Reversible Computing Zero Energy Computing Asynchronous Circuits Automata 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anter, A., Dolev, S.: Optical solution for hard on average #P-complete instances (using exponential space for solving instances of the permanent). Natural Computing 9(4), 891–902 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H.: Logical reversibility of computation. Journal of Research and Development 17, 525–532 (1973)zbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: The Thermodynamics of computation - A Review. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)CrossRefGoogle Scholar
  4. 4.
    Caulfield, H.J.: Zero-Energy Optical Logic: Can It Be Practical? In: Dolev, S., Oltean, M. (eds.) OSC 2009. LNCS, vol. 5882, pp. 30–36. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Caulfield, H.J.: Optics Goes Where No Electronics Can Go: Zero-Energy-Dissipation Logic. In: Dolev, S., Haist, T., Oltean, M. (eds.) OSC 2008. LNCS, vol. 5172, pp. 1–8. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Fitoussi, H.: Optical solutions for bounded NP problems, Master thesis, Ben-Gurion University of the Negev (2007)Google Scholar
  7. 7.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hardly, J., Shamir, J.: Optics insired logic architecture. Optics Express 15, 150–165 (2007)CrossRefGoogle Scholar
  9. 9.
    Jacobson, H.: Asynchronous circuit design - A case study of framework called ack. Master thesis, Lulea University of Technology (1996)Google Scholar
  10. 10.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5, 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lee, J., Huang, X., Zhu, Q.: Embedding Simple Reversed-Twin Elements into Self-Timed Reversible Cellular Automata. Journal of Convergence Information Technology 6(1), 49–54 (2011)CrossRefGoogle Scholar
  12. 12.
    Shamir, J., Caulfield, H.J., Micelli, W., Seymour, R.J.: Optical Computing and the Fredkin Gates. Applied Optics 25, 1604–1607 (1986)CrossRefGoogle Scholar
  13. 13.
    Spars, J., Furber, S.: Principles of asynchronous circuit design - A systems perspective. Kluwer Academic Publishers (2001)Google Scholar
  14. 14.
    Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM Journal on Emerging Technologies in Computing Systems 6(4), Art. 14 (2010)Google Scholar
  15. 15.
    Zavalin, A.I., Shamir, J., Vikram, C.S., Caulfield, H.J.: Achieving stabilization in interferometric logic operations. Applied Optics 45, 360–365 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amir Anter
    • 1
  • Shlomi Dolev
    • 1
  • Joseph Shamir
    • 2
  1. 1.Ben-Gurion University of the NegevIsrael
  2. 2.Technion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations