Advertisement

Quantum Optical Transient Encryption and Processing

  • Zeev Zalevsky
  • David Sylman
  • H. John Caulfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7715)

Abstract

This paper is written in the memory of H. John Caulfield, a unique breaking through scientist that was known for his capability of thinking “out of the box” and which has made large number of significant scientific contributions in many optics related fields. In the last few years of his carrier, John has invested some time in the field of optical quantum computing and encryption. In this paper we wish to describe one of such directions investigated by John and dealing with optical quantum encryption and processing.

Keywords

Interferometry encryption polarization based encoding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    John Caulfield, H.: Transmission through a tapered quartz tube in the laser near field. Nature 208, 773 (1965)CrossRefGoogle Scholar
  2. 2.
    Greguss, P., Caulfield, H.J.: Multiplexing Ultrasonic Wave Fronts by Holography. Science 177, 422 (1972)CrossRefGoogle Scholar
  3. 3.
    Sylman, D., Zalevsky, Z., Caulfield, H.J.: Entanglement based Optical Transient Encryption. Optics Commun. 283, 4551–4557 (2010)CrossRefGoogle Scholar
  4. 4.
    Javidi, B.: Securing information with optical technologies. Phys. Today 50, 27–32 (1997)CrossRefGoogle Scholar
  5. 5.
    Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)CrossRefGoogle Scholar
  6. 6.
    Matoba, O., Javidi, B.: Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Opt. Lett. 24, 762–764 (1999)CrossRefGoogle Scholar
  7. 7.
    Towghi, N., Javidi, B., Luo, Z.: Fully phase encrypted image processor. J. Opt. Soc. Am. A 16, 1915–1927 (1999)CrossRefGoogle Scholar
  8. 8.
    Liu, S.T., Mi, Q.L., Zhu, B.H.: Optical image encryption with multistage and multichannel fractional Fourier-domain filtering. Opt. Lett. 26, 1242–1244 (2001)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Zheng, C.H., Tanno, N.: Optical encryption based on iterative fractional Fourier transform. Opt. Commun. 202, 277–285 (2002)CrossRefGoogle Scholar
  10. 10.
    Matoba, O., Javidi, B.: Encrypted optical storage with wavelength-key and random phase codes. Appl. Opt. 38, 6785–6790 (1999)CrossRefGoogle Scholar
  11. 11.
    Javidi, B., Nomura, T.: Polarization encoding for optical security systems. Opt. Eng. 9, 2439–2443 (2000)Google Scholar
  12. 12.
    Tan, X., Matoba, O., Okada-Shudo, Y., Ide, M., Shimura, T., Kuroda, K.: Secure optical memory system with polarization encryption. Appl. Opt. 40, 2310–2315 (2001)CrossRefGoogle Scholar
  13. 13.
    Matoba, O., Javidi, B.: Secure holographic memory by double random polarization encryption. Appl. Opt. 43, 2915–2919 (2004)CrossRefGoogle Scholar
  14. 14.
    Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zeev Zalevsky
    • 1
  • David Sylman
    • 1
  • H. John Caulfield
    • 2
  1. 1.Faculty of EngineeringBar-Ilan UniversityRamat-GanIsrael
  2. 2.Alabama A&M University Research InstituteNormal AlUSA

Personalised recommendations