Skip to main content

On the Characterization of Plane Bus Graphs

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

Abstract

Bus graphs are being used for the visualization of hyperedges, for example in VLSI design. Formally, they are specified by bipartite graphs G = (B ∪ V,E) of bus vertices B realized by single horizontal and vertical segments, and point vertices V that are connected orthogonally to the bus segments without any bend. The decision whether a bipartite graph admits a bus realization is NP-complete. In this paper we show that in contrast the question whether a plane bipartite graph admits a planar bus realization can be answered in polynomial time.

We first identify three necessary conditions on the partition B = B V  ∪ B H of the bus vertices, here B V denotes the vertical and B H the horizontal buses. We provide a test whether good partition, i.e., a partition obeying these conditions, exist. The test is based on the computation of maximum matching on some auxiliary graph. Given a good partition we can construct a non-crossing realization of the bus graph on an O(nO(n) grid in linear time.

Our Research is partially supported by EuroGIGA project GraDR 10-EuroGIGA-OP-003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, A., Coggan, M., Marco, P.D., Doyon, A., Flookes, L., Heilala, S., Kim, E., Wing, J.L.O., Préville-Ratelle, L.F., Whitesides, S., Yu, N.: On bus graph realizability. CCCG abs/cs/0609127, 229–232 (2007)

    Google Scholar 

  2. De Fraysseix, H., De Mendez, P.O.: On topological aspects of orientations. Discrete Mathematics 229(1-3), 57–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)

    Google Scholar 

  4. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays in Geometric Graph Theory, Algorithms and Combinatorics, vol. 29. Springer (2012)

    Google Scholar 

  5. Felsner, S., Fusy, É., Noy, M., Orden, D.: Bijections for Baxter families and related objects. Journal of Comb. Theory A 18, 993–1020 (2011)

    Article  MathSciNet  Google Scholar 

  6. Felsner, S., Huemer, C., Kappes, S., Orden, D.: Binary labelings for plane quadrangulations and their relatives. Discrete Mathematics & Theoretical Computer Science 12(3), 115–138 (2010)

    MathSciNet  Google Scholar 

  7. Fusy, E.: Combinatoire des cartes planaires et applications algorithmiques. Ph.D. thesis, LIX Ecole Polytechnique (2007)

    Google Scholar 

  8. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math (14), 255–265 (1966)

    Google Scholar 

  9. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22, 1218–1226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hwang, F.W., Richards, D.S., Winter, P.: The Steiner tree problem. Annals of Discrete Mathematics (53) (1992)

    Google Scholar 

  11. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs, Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  12. Lengauer, T.: VLSI theory. In: Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (A), pp. 835–868 (1990)

    Google Scholar 

  13. Mucha, M., Sankowski, P.: Maximum matchings in planar graphs via gaussian elimination. Algorithmica 45(1), 3–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific (2004)

    Google Scholar 

  15. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs. Discrete & Computational Geometry 1, 343–353 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discrete & Computational Geometry 1, 321–341 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Thompson, C.D.: A Complexity Theory for VLSI. Ph.D. thesis, Carnegie-Mellon University (1980)

    Google Scholar 

  18. Zhou, X., Nishizeki, T.: Algorithm for the cost edge-coloring of trees. J. Comb. Optim. 8(1), 97–108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruckdorfer, T., Felsner, S., Kaufmann, M. (2013). On the Characterization of Plane Bus Graphs. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics