Skip to main content

Optimal Network Decontamination with Threshold Immunity

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

Abstract

We consider the monotone connected graph search problem, that is, the problem of decontaminating a network infected by a mobile virus, using as few mobile cleaning agents as possible and avoiding recontamination. After a cleaning agent has left a vertex v, this vertex will become recontaminated if m or more of its neighbours are infected, where m ≥ 1 is a threshold parameter of the system. In the literature, the value of m has been limited to m = 1 or to the strict majority of the neighbours of the nodes.

In this paper, we consider this problem for any integer value m ≥ 1. We direct our investigation to widely used interconnection networks, namely meshes, hypercubes, and trees. For each of these classes of networks, we establish matching upper and lower bounds on the number of agents necessary to decontaminate with threshold m. The upper bound proofs are constructive: we present optimal decontamination protocols; we also show that these protocols are optimal or near-optimal in terms of number of moves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altshuler, Y., Dolev, S., Elovici, Y., Aharony, N.: TTLed random walks for collaborative monitoring. In: Proc. 2nd Int. Work. Network Sci. Comm. Net. (2010)

    Google Scholar 

  2. Barrière, L., Flocchini, P., Fomin, F.V., Fraignaud, P., Nisse, N., Santoro, N., Thilikos, D.M.: Connected graph searching. Inf. and Comp. 219, 1–16 (2012)

    Article  MATH  Google Scholar 

  3. Barrière, L., Flocchini, P., Fraignaud, P., Santoro, N.: Capture of an intruder by mobile agents.Proceedings of the 14th Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)

    Google Scholar 

  4. Bienstock, D., Seymour, P.: Monotonicity in graph searching. Journal of Algorithms 12, 239–245 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blin, L., Fraignaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. Theoretical Computer Science 399(1-2), 12–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dereniowski, D.: Connected searching of weighted trees. Theoretical Computer Science 412(41), 5700–5713 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 52(3), 167–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori using mobile agents. Int. J. on Found. of Comp. Sci. 18(3), 547–563 (2006)

    Article  MathSciNet  Google Scholar 

  9. Flocchini, P., Luccio, F.L., Song, L.X.: Size optimal strategies for capturing an intruder in mesh networks. In: Proceedings of the International Conference on Communications in Computing, pp. 200–206 (2005)

    Google Scholar 

  10. Flocchini, P., Mans, B., Santoro, N.: Tree decontamination with temporary immunity. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 330–341. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theoretical Computer Science 399(3), 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, F.V., Thilikos, D.M., Todineau, I.: Connected graph searching in outerplanar graphs. In: Proc. 7th Int. Conference on Graph Theory, (ICGT) (2005)

    Google Scholar 

  13. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Distributed Computing 22(2), 117–127 (2009)

    Article  Google Scholar 

  14. Imani, N., Sarbazi-Azadb, H., Zomaya, A.Y.: Capturing an intruder in product networks. Journal of Parallel and Distributed Computing 67(9), 1018–1028 (2007)

    Article  MATH  Google Scholar 

  15. Imani, N., Sarbazi-Azad, H., Zomaya, A.Y., Moinzadeh, P.: Detecting threats in star graphs. IEEE Trans. on Parallel and Distr. Systems 20(4), 474–483 (2009)

    Article  Google Scholar 

  16. Luccio, F., Pagli, L.: A general approach to toroidal mesh decontamination with local immunity. In: Proc. 23rd Int. Par. and Distr. Processing Symp. (IPDPS) (2009)

    Google Scholar 

  17. Luccio, F., Pagli, L., Santoro, N.: Network decontamination in presence of local immunity. Int. J. of Foundation of Computer Science 18(3), 457–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luccio, F.L.: Contiguous search problem in Sierpinski graphs. Theory of Computing Systems 44(2), 186–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nisse, N.: Connected graph searching in chordal graphs. Discrete Applied Mathematics 157(12), 2603–2610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Santoro, N.: Design and Analysis of Distributed Algorithms. John Wiley (2007)

    Google Scholar 

  21. Shareghi, P., Imani, N., Sarbazi-Azad, H.: Capturing an intruder in the pyramid. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 580–590. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Yanga, B., Dyerb, D., Alspach, B.: Sweeping graphs with large clique number. Discrete Mathematics 309(18), 5770–5780 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Flocchini, P., Luccio, F., Pagli, L., Santoro, N. (2013). Optimal Network Decontamination with Threshold Immunity. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics