Skip to main content

Decentralized Throughput Scheduling

  • Conference paper
Algorithms and Complexity (CIAC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7878))

Included in the following conference series:

Abstract

Motivated by the organization of distributed service systems, we study models for throughput scheduling in a decentralized setting. In throughput scheduling, a set of jobs j with values w j , processing times p ij on machine i, release dates r j and deadlines d j , is to be processed non-preemptively on a set of unrelated machines. The goal is to maximize the total value of jobs scheduled within their time window [r j ,d j ]. While approximation algorithms with different performance guarantees exist for this and related models, we are interested in the situation where subsets of machines are governed by selfish players. We give a universal result that bounds the price of decentralization: Any local α-approximation algorithm, α ≥ 1, yields Nash equilibria that are at most a factor (α + 1) away from the global optimum, and this bound is tight. For identical machines, we improve this bound to \({\sqrt[\alpha]{e}}/{(\sqrt[\alpha]{e}-1)}\approx (\alpha+1/2)\), which is shown to be tight, too. The latter result is obtained by considering subgame perfect equilibria of a corresponding sequential game. We also address some variations of the problem.

Research supported by CTIT, Centre for Telematics and Information Technology, University of Twente, project “Mechanisms for Decentralized Service Systems”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proc. 45th Symp. Foundations of Computer Science (FOCS), pp. 295–304. IEEE (2004)

    Google Scholar 

  2. Bakker, V., Bosman, M.G.C., Molderink, A., Hurink, J.L., Smit, G.J.M.: Demand side load management using a three step optimization methodology. In: 1st IEEE Int. Conf. on Smart Grid Communications, pp. 431–436. IEEE (2010)

    Google Scholar 

  3. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Approximating the throughput of multiple machines in real-time scheduling. SIAM J. Comp. 31(2), 331–352 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, P., Dasgupta, B.: Multi-phase Algorithms for Throughput Maximization for Real-Time Scheduling. J. Combinatorial Optimization 4(3), 307–323 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  6. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-oriented federation of cloud computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in Approximate Nash Equilibria. In: Proceedings 8th ACM EC, pp. 355–358. ACM (2007)

    Google Scholar 

  8. Garey, M.R., Johnson, D.S.: “Strong” NP-completeness results: motivation, examples, and implications. Journal of the ACM 25(3), 499–508 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics 5(2), 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  11. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Kuhn, H.W.: Extensive Games and the Problem of Information. In: Contribution to the Theory of Games. Annals of Math. Studies, 28, vol. II, pp. 193–216 (1953)

    Google Scholar 

  13. Lawler, E.L., Moore, J.M.: A functional equation and its application to resource allocation and sequencing problems. Management Science 16, 77–84 (1969)

    Article  MATH  Google Scholar 

  14. Lenstra, J.K., Rinnooy Kan, A.H.G., Brucker, P.: Complexity of Machine Scheduling Problems. Annals Disc. Math. 1, 343–362 (1977)

    Article  MathSciNet  Google Scholar 

  15. Molderink, A., Bakker, V., Bosman, M.G.C., Hurink, J.L., Smit, G.J.M.: Management and Control of Domestic Smart Grid Technology. IEEE Transactions on Smart Grid 1(2), 109–119 (2010)

    Article  Google Scholar 

  16. Moore, J.M.: An n job, one machine sequencing algorithm for minimizing the number of late jobs. Management Science 15, 102–109 (1968)

    Article  MATH  Google Scholar 

  17. Selten, R.: A simple model of imperfect competition, where 4 are few and 6 are many. International Journal of Game Theory 2, 141–201 (1973)

    Article  MATH  Google Scholar 

  18. Skopalik, E., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proc. 40th Symp. on Theory of Computing (STOC), pp. 355–364. ACM (2008)

    Google Scholar 

  19. http://www.tamyca.com and http://www.autonetzer.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Jong, J., Uetz, M., Wombacher, A. (2013). Decentralized Throughput Scheduling. In: Spirakis, P.G., Serna, M. (eds) Algorithms and Complexity. CIAC 2013. Lecture Notes in Computer Science, vol 7878. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38233-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38233-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38232-1

  • Online ISBN: 978-3-642-38233-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics