Skip to main content

Towards Minimal Barcodes

  • Conference paper
  • 1864 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7877))

Abstract

In the setting of persistent homology computation, a useful tool is the persistence barcode representation in which pairs of birth and death times of homology classes are encoded in the form of intervals. Starting from a polyhedral complex K (an object subdivided into cells which are polytopes) and an initial order of the set of vertices, we are concerned with the general problem of searching for filters (an order of the rest of the cells) that provide a minimal barcode representation in the sense of having minimal number of “k-significant” intervals, which correspond to homology classes with life-times longer than a fixed number k. As a first step, in this paper we provide an algorithm for computing such a filter for k = 1 on the Hasse diagram of the poset of faces of K.

Partially supported under grant MTM2012-32706. Authors listed alphabetically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayala, R., Fernandez-Ternero, D., Vilches, J.A.: Perfect discrete Morse functions on 2-complexes. Pattern Recognition Letters 33, 1495–1500 (2012)

    Article  Google Scholar 

  2. Carlsson, G., de Silva, V., Morozov, D.: Zigzag persistent homology and real-valued functions. In: Proc. 25th Annual Symposium on Computational Geometry (SoCG), pp. 247–256 (2009)

    Google Scholar 

  3. Conforti, M., Cornuejols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR: A Quarterly Journal of Operations Research 8(1), 1–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proc. 41st Annual Symposium on Foundations of Computer Science (FOCS 2000), pp. 454–463. IEEE Computer Society (2000)

    Google Scholar 

  5. Forman, R.: Morse theory for cell complexes. Advances in Mathematics 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gonzalez-Diaz, R., Real, P.: On the cohomology of 3D digital images. Discrete Applied Math. 147(2-3), 245–263 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gonzalez-Diaz, R., Ion, A., Jimenez, M.J., Poyatos, R.: Incremental-Decremental Algorithm for Computing AT-Models and Persistent Homology. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 286–293. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Ghrist, R.: Barcodes: The persistent topology of data. Bulletin of the American Mathematical Society 45, 61–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gutierrez, A., Monaghan, D., Jiménez, M.J., O’Connor, N.E.: Persistent Homology for 3D Reconstruction Evaluation. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 139–147. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kaibel, V.: Extended formulations in combinatorial optimization. Optima 85, 2–7 (2011)

    Google Scholar 

  11. Lamar-León, J., García-Reyes, E.B., Gonzalez-Diaz, R.: Human Gait Identification Using Persistent Homology. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 244–251. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

    Google Scholar 

  13. Joswig, M., Pfetsch, M.E.: Computing Optimal Discrete Morse Funcions. Elec. Notes Disc. Math. 17, 191–195 (2004)

    Article  MathSciNet  Google Scholar 

  14. Kozlov, D.N.: Combinatorial Algebraic Topology. Springer (2008)

    Google Scholar 

  15. Lewiner, T., Lopes, H., Tavares, G.: Optimal Discrete Morse Functions for 2-manifolds. Comput. Geom. 26, 221–233 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maver, J., Bajcsy, R.: Occlusions as a guide for planning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(5), 417–433 (1993)

    Article  Google Scholar 

  17. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley Co. (1984)

    Google Scholar 

  18. Scott, W.R., Roth, G., Rivest, J.F.: View planning for automated three-dimensional object reconstruction and inspection. ACM Computing Surveys 35(1) (2003)

    Google Scholar 

  19. Tarabanis, K.A., Allen, P.K., Tsai, R.Y.: A survey of sensor planning in computer vision. IEEE Trans. on Robotics and Automation 11(1), 86–104 (1995)

    Article  Google Scholar 

  20. Vanderbeck, F., Wolsey, L.A.: Reformulation and decomposition of integer programs. In: Junger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 431–502. Springer (2010)

    Google Scholar 

  21. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete and Computational Geometry 33(2), 249–274 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

González-Díaz, R., Jiménez, MJ., Krim, H. (2013). Towards Minimal Barcodes. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2013. Lecture Notes in Computer Science, vol 7877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38221-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38221-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38220-8

  • Online ISBN: 978-3-642-38221-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics