Skip to main content

Basic Principles of the Interaction of X-Rays with Matter: Quantum Electrodynamical Analysis

  • Chapter
  • First Online:
Theoretical Concepts of X-Ray Nanoscale Analysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 183))

  • 1812 Accesses

Abstract

Microscopic analysis of various processes arising due to the interaction of X-rays with condensed matter was considered in many papers, especially in the fundamental monograph [1], where the basic principles of X-ray optics were described. However, since that time a series of advanced techniques for X-ray structure characterization have been actively developed, such as the diffraction near the absorption edges [2], diffraction in the ferromagnetic materials [3], methods using the high-intensity radiation from the X-ray laser [4], and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.W. James, The Optical Principle of the Diffraction of X-rays (G.Bell and Sons, London, 1962)

    Google Scholar 

  2. J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72, 621 (2000)

    Article  ADS  Google Scholar 

  3. S.A. Stepanov, S.K. Sinha, Phys. Rev. B 61, 15302 (2000)

    Article  ADS  Google Scholar 

  4. K.J. Gaffney, H.N. Chapman, Science 316, 1444 (2007)

    Article  ADS  Google Scholar 

  5. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, London, 2005)

    MATH  Google Scholar 

  6. S.H. Chen, M. Kotlarchyk, Interactions of Photons and Neutrons with Matter (World Scientific, Singapore, 2008)

    Google Scholar 

  7. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom- Photon Interactions (Wiley, New York, 2004)

    Google Scholar 

  8. M. \(\breve{S}\)indelka, Phys. Rev. A 81, 033833 (2010)

    Google Scholar 

  9. A. Authier, Dynamical Theory of X-ray Diffraction (Oxford University Press, New York, 2001)

    Google Scholar 

  10. U.Pietsch, V.Holy, T.Baumbach, High-Resolution X-ray Scattering: From Thin Films to Lateral Nanostuctures, 2nd edn. (Springer, Berlin, 2004)

    Google Scholar 

  11. V.G. Baryshevsky, I.D. Feranchuk, A.P. Ulyanenkov, Parametric X-ray Radiation from Rlativistic Electrons in a crystal: Theory Experiment and Applications (Springer, Berlin, 2005)

    Google Scholar 

  12. N.N. Bogoluibov, Ukr. Matematicheskii Zh. 2, 3 (1960) (in russian)

    Google Scholar 

  13. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  14. L.D. Landau, E.M. Lifshitz, Electrodynamics of Condensed Matter, 2nd edn. (Nauka, Moscow, 1982) (in russian)

    Google Scholar 

  15. V.S. Popov, Uspekhi Fiz. Nauk 174, 921 (2004) (in russian)

    Google Scholar 

  16. R. Kubo, J. Phys. Soc. Japan, 12, 570 (1957)

    Google Scholar 

  17. D. Chandler, Introduction to Modern 1197 Statistical Mechanics (Oxford University Press, Oxford, 1987)

    Google Scholar 

  18. V.B. Berestetsky, E.M. Lifshitz, L.P. Pitaevsky, Relativistic Quantum Theory, V. 1 (Nauka, Moscow, 1965) (in russian)

    Google Scholar 

  19. M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964)

    MATH  Google Scholar 

  20. V.G. Baryshevsky, Nuclear Optics of Polarized Media (Energoatomizdat, Moscow, 1995) (in russian)

    Google Scholar 

  21. O. Klein, Y. Nishina, Z. für Phys. 52, 853 (1929)

    Article  ADS  MATH  Google Scholar 

  22. S. Takagi, Acta Crystallogr. 15, 1311 (1962)

    Google Scholar 

  23. D. Taupin, Bull. Soc. Fr. Mineral. Cristallogr. 87, 469 (1964)

    Google Scholar 

  24. M.A. Krivoglaz, X-Ray and Neutron Diffraction in Nonideal rystals (Springer, Berlin, 1996)

    Book  Google Scholar 

  25. B.W. Batterman, Rev. Mod. Phys. 36, 681 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  26. C. Kittel, Introduction to Solid State Physics, 4th edn. (Wiley, New York, 1976)

    Google Scholar 

  27. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1975)

    Google Scholar 

  28. B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54, 593 (1993)

    Article  Google Scholar 

  29. International Tables for Crystallography. V.C., (Kluwer Academic Publishers, Dordrecht, 1992).

    Google Scholar 

  30. B.K. Vainshtein, Fundamental of Crystals, 2nd edn. (Springer, Berlin, 1996)

    Google Scholar 

  31. J. Ziman, Principles of the Theory of Solids (Campridge University Press, Campridge, 1972)

    Google Scholar 

  32. D. Bruesch, Phonons: Theory and Experiments (Springer, Berlin, 1987)

    Book  Google Scholar 

  33. P.M. Mors, H. Feshbach, Methods of Theoretical Physics, vol. 1 (Springer, Berlin, 1987)

    Google Scholar 

  34. F.C. Fischcer, T. Brage, P. Jonson, Computational atomic structure A, Multi-configuration Hartree-Fock approach (IOP Pubishing, Bristol, 1997)

    Google Scholar 

  35. E. Climenti, C. Roetti, At. Nucl. Data Tables 14, 177 (1974)

    Article  ADS  Google Scholar 

  36. L.H. Thomas, Proc. Cambridge Philos. Soc. 23, 542 (1926)

    Google Scholar 

  37. E. Fermi, Z. Phys. 48, 73 (1928)

    Google Scholar 

  38. D.T. Cromer, J.B. Mann, Acta Cryst. A 24, 321 (1968)

    Article  Google Scholar 

  39. D. Waasmaier, A. Kirfel, Acta Cryst. A 51, 416 (1995)

    Article  Google Scholar 

  40. S. Brennan, P.I. Cowan, Rev. Sci. Instrum. 63, 850 (1991)

    Google Scholar 

  41. O.M. Lugovskaya, A.S. Stepanov. Kristallografiya 36, 856 (1991)

    Google Scholar 

  42. I.D. Feranchuk, L.I. Gurskii, L.I. Komarov, O.M. Lugovskaya, F. Burgaezy, A.P. Ulyanenkov, Acta Cryst. A 58, 370 (2002)

    Article  Google Scholar 

  43. V.V. Triguk, I.D. Feranchuk, J. Appl. Spectrosc. 77, 749 (2011)

    Article  ADS  Google Scholar 

  44. R.T. Sharp, G.K. Horton, Phys. Rev 90, 317 (1953)

    Article  MathSciNet  ADS  Google Scholar 

  45. H. Nakatsuji, H. Nakashima, Y. Korokawa, A. Ishikawa, Phys. Rev. Lett 99, 240402 (2007)

    Article  ADS  Google Scholar 

  46. N.A. Cordero, N.H. March, J.A. Alonso, Phys. Rev. A 75, 052502 (2007)

    Google Scholar 

  47. C. Amovilli, N.H. March, J.D.Talman. Phys. Rev. A 77, 032503 (2008)

    Google Scholar 

  48. J.C. Slater, Phys. Rev. 81, 375 (1971)

    Google Scholar 

  49. L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd edn. (Pergamon Press, Oxford, 1977)

    Google Scholar 

  50. M. Kregar, V.F. Weisskopf, Am. J. Phys. 50, 213 (1982)

    Article  ADS  Google Scholar 

  51. W. Heisenberg, Z. Phys. 39, 429 (1927)

    Google Scholar 

  52. J.C. Slater, Introduction in Theoretical Physics (McGraw Hill, New York, 1933)

    Google Scholar 

  53. M. Kregar, Il Nuovo Cimento 8D, 159 (1986)

    Google Scholar 

  54. I.D. Feranchuk, L.I. Komarov, I.V. Nechipor, A.P. Ulyanenkov, Ann. Phys. (NY) A238, 370 (1995)

    Google Scholar 

  55. I.D. Feranchuk, A.I. Ivanov, J. Phys. A Math. Gen. 37, 9841 (2004)

    Google Scholar 

  56. I.D. Feranchuk, V.V. Triguk, Phys. Lett. A 375, 2550 (2011)

    Article  ADS  MATH  Google Scholar 

  57. L.I. Gurskii, L.I. Komarov, A.M. Solodukhin, Int. J. Quantum Chem. 72, 499 (1999)

    Article  Google Scholar 

  58. P.Gomba\(\acute{s}\), Rev. Mod. Phys. 35, 512 (1963)

    Google Scholar 

  59. I.K. Dmitrieva, G.I. Plindov, Properties of Atoms and Molecules According to Statistical Theory (Nauka Technika, Minsk, 1991) (in russian)

    Google Scholar 

  60. C.F. Fischer, At. Data Nucl. Data Tables 12, 87 (1973)

    Article  ADS  Google Scholar 

  61. A. Lazar, I. Feranchuk, V. Triguk, Proceedings Interaction of the Radiation with Solids (Belarusian University, Minsk, 2009), p. 37

    Google Scholar 

  62. S.P. Hau-Riege, Phys. Rev. A 76, 042511 (2007)

    Article  ADS  Google Scholar 

  63. L.I. Datsenko, V.P. Klad’ko, Crystallogr. Rep. 45, 705 (2000)

    Article  ADS  Google Scholar 

  64. H.X. Gao, L.M. Peng, Acta Cryst. A 55, 926 (1999)

    Article  Google Scholar 

  65. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, vol. 2 (Wiley, New York, 1975)

    MATH  Google Scholar 

  66. G.B. Bokii, Crystallochemie (Nauka, Moscow, 1971)

    Google Scholar 

  67. K.P. Huber, G. Gerzberg, Molecular Spectra and Molecular Structure. V. 4 . Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979)

    Google Scholar 

  68. L.A. Gribov, S.P. Mushtakova, Quantum Chemistry (Gardariki, Moscow, 1999)

    Google Scholar 

  69. I.P. Biersack, I.F. Ziegler, Nucl. Instr. Methods 194, 93 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Benediktovitch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benediktovitch, A., Feranchuk, I., Ulyanenkov, A. (2014). Basic Principles of the Interaction of X-Rays with Matter: Quantum Electrodynamical Analysis. In: Theoretical Concepts of X-Ray Nanoscale Analysis. Springer Series in Materials Science, vol 183. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38177-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38177-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38176-8

  • Online ISBN: 978-3-642-38177-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics