Advertisement

Abstract

A particularly difficult class of scheduling and routing problems involves an objective that is a sum of time-varying action costs, which increases the size and complexity of the problem. Solve-and-improve approaches, which find an initial solution for a simplified model and improve it using a cost function, and Mixed Integer Programming (MIP) are often used for solving such problems. However, Constraint Programming (CP), particularly with Lazy Clause Generation (LCG), has been found to be faster than MIP for some scheduling problems with time-varying action costs. In this paper, we compare CP and LCG against a solve-and-improve approach for two recently introduced problems in maritime logistics with time-varying action costs: the Liner Shipping Fleet Repositioning Problem (LSFRP) and the Bulk Port Cargo Throughput Optimisation Problem (BPCTOP). We present a novel CP model for the LSFRP, which is faster than all previous methods and outperforms a simplified automated planning model without time-varying costs. We show that a LCG solver is faster for solving the BPCTOP than a standard finite domain CP solver with a simplified model. We find that CP and LCG are effective methods for solving scheduling problems, and are worth investigating for other scheduling and routing problems that are currently being solved using MIP or solve-and-improve approaches.

Keywords

Schedule Problem Mixed Integer Programming Constraint Programming Mixed Integer Programming Model Automate Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Christiansen, M., Fagerholt, K.: Robust ship scheduling with multiple time windows. Naval Research Logistics 49(6), 611–625 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Christiansen, M., Fagerholt, K., Nygreen, B., Ronen, D.: Chapter 4: Maritime transportation. In: Barnhart, C., Laporte, G. (eds.) Transportation. Handbooks in Operations Research and Management Science, vol. 14, pp. 189–284. Elsevier (2007)Google Scholar
  4. 4.
    Christiansen, M., Fagerholt, K., Ronen, D.: Ship routing and scheduling: status and perspectives. Transportation Science 38(1), 1–18 (2004)CrossRefGoogle Scholar
  5. 5.
    Chu, G., de la Banda, M.G., Mears, C., Stuckey, P.J.: Symmetries and lazy clause generation. In: Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP 2010) Doctoral Programme, pp. 43–48 (September 2010)Google Scholar
  6. 6.
    Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-Chaining Partial-Order Planning. In: Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS 2010) (May 2010)Google Scholar
  7. 7.
    Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M.M., Soumis, F.: VRP with time windows. In: Toth, P., Vigo, D. (eds.) The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications, vol. 9, ch. 7, pp. 157–194. SIAM (2002)Google Scholar
  8. 8.
    Fagerholt, K.: Ship scheduling with soft time windows: an optimisation based approach. European Journal of Operational Research 131(3), 559–571 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fagerholt, K.: A computer-based decision support system for vessel fleet scheduling - experience and future research. Decision Support Systems 37(1), 35–47 (2004)CrossRefGoogle Scholar
  10. 10.
    Fagerholt, K., Laporte, G., Norstad, I.: Reducing fuel emissions by optimizing speed on shipping routes. Journal of the Operational Research Society 61, 523–529 (2010)zbMATHCrossRefGoogle Scholar
  11. 11.
    Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Figliozzi, M.A.: The time dependent vehicle routing problem with time windows: Benchmark problems, an efficient solution algorithm, and solution characteristics. Transportation Research Part E: Logistics and Transportation Review 48(3), 616–636 (2012)CrossRefGoogle Scholar
  13. 13.
    Fox, M., Long, D.: PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of Artificial Intelligence Research 20(1), 61–124 (2003)zbMATHGoogle Scholar
  14. 14.
    Kelareva, E., Brand, S., Kilby, P., Thiébaux, S., Wallace, M.: CP and MIP methods for ship scheduling with time-varying draft. In: Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS 2012), pp. 110–118 (June 2012)Google Scholar
  15. 15.
    Kelareva, E., Kilby, P., Thiébaux, S., Wallace, M.: Ship scheduling with time-varying draft: Constraint programming and benders decomposition. Transportation Science (2012) (submitted)Google Scholar
  16. 16.
    Kilby, P., Verden, A.: Flexible routing combing constraint programming, large neighbourhood search, and feature-based insertion. In: Schill, K., Scholz-Reiter, B., Frommberger, L. (eds.) Proceedings 2nd Workshop on Artificial Intelligence and Logistics (AILOG 2011), pp. 43–49 (2011)Google Scholar
  17. 17.
    Lin, W.C., Liao, D.Y., Liu, C.Y., Lee, Y.Y.: Daily imaging scheduling of an earth observation satellite. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 35(2), 213–223 (2005)CrossRefGoogle Scholar
  18. 18.
    Nethercote, N., Marriott, K., Rafeh, R., Wallace, M., de la Banda, M.G.: Specification of Zinc and MiniZinc (November 2010)Google Scholar
  19. 19.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Norstad, I., Fagerholt, K., Laporte, G.: Tramp ship routing and scheduling with speed optimization. Transportation Research 19, 853–865 (2011)CrossRefGoogle Scholar
  21. 21.
    Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    OMC International. DUKC helps Port Hedland set ship loading record (2009), http://www.omc-international.com/images/stories/press/omc-20090810-news-in-wa.pdf
  23. 23.
    Port Hedland Port Authority. 2009/10 cargo statistics and port information (2011), http://www.phpa.com.au/docs/CargoStatisticsReport.pdf
  24. 24.
    Qureshi, A.G., Taniguchi, E., Yamada, T.: An exact solution approach for vehicle routing and scheduling problems with soft time windows. Transportation Research Part E: Logistics and Transportation Review 45(6), 960–977 (2009)CrossRefGoogle Scholar
  25. 25.
    Rakke, J.G., Christiansen, M., Fagerholt, K., Laporte, G.: The traveling salesman problem with draft limits. Computers & Operations Research 39, 2161–2167 (2011)CrossRefGoogle Scholar
  26. 26.
    Russell, A.H.: Cash flows in networks. Management Science 16(5), 357–373 (1970)zbMATHCrossRefGoogle Scholar
  27. 27.
    Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  28. 28.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Solving the resource constrained project scheduling problem with generalised precedences by lazy clause generation (2010), http://arxiv.org/abs/1009.0347
  29. 29.
    Sexton, T.R., Choi, Y.: Pickup and delivery of partial loads with soft time windows. American Journal of Mathematical and Management Science 6, 369–398 (1985)Google Scholar
  30. 30.
    Smith, S.: Is scheduling a solved problem? In: Multidisciplinary Scheduling: Theory and Applications, pp. 3–17 (2005)Google Scholar
  31. 31.
    Song, J.-H., Furman, K.C.: A maritime inventory routing problem: Practical approach. Computers & Operations Research (2010)Google Scholar
  32. 32.
    Tierney, K., Coles, A., Coles, A., Kroer, C., Britt, A.M., Jensen, R.M.: Automated planning for liner shipping fleet repositioning. In: Proceedings of the 22nd International Conference on Automated Planning and Scheduling (ICAPS 2012), pp. 279–287 (June 2012)Google Scholar
  33. 33.
    Tierney, K., Jensen, R.M.: The liner shipping fleet repositioning problem with cargo flows. In: Hu, H., Shi, X., Stahlbock, R., Voß, S. (eds.) ICCL 2012. LNCS, vol. 7555, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  34. 34.
    University of Melbourne. MiniZinc Challenge 2011 (2011), http://www.g12.cs.mu.oz.au/minizinc/challenge2011/challenge.html
  35. 35.
    Vanhoucke, M., Demeulemeester, E.L., Herroelen, W.S.: On maximizing the net present value of a project under renewable resource constraints. Management Science 47, 1113–1121 (2001)zbMATHCrossRefGoogle Scholar
  36. 36.
    Wallace, M.: G12 - Towards the Separation of Problem Modelling and Problem Solving. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 8–10. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  37. 37.
    Wang, J., Jing, N., Li, J., Chen, H.: A multi-objective imaging scheduling approach for earth observing satellites. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007), pp. 2211–2218 (2007)Google Scholar
  38. 38.
    Wolfe, W.J., Sorensen, S.E.: Three scheduling algorithms applied to the earth observing systems domain. Management Science 46(1), 148–168 (2000)zbMATHCrossRefGoogle Scholar
  39. 39.
    Yao, F., Li, J., Bai, B., He, R.: Earth observation satellites scheduling based on decomposition optimization algorithm. International Journal of Image, Graphics and Signal Processing 1, 10–18 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elena Kelareva
    • 1
    • 2
  • Kevin Tierney
    • 3
  • Philip Kilby
    • 1
    • 2
  1. 1.Australian National UniversityCanberraAustralia
  2. 2.NICTACanberraAustralia
  3. 3.IT University of CopenhagenCopenhagenDenmark

Personalised recommendations