Advertisement

Abstract

Binary and multivalued decision diagrams are closely related to dynamic programming (DP) but differ in some important ways. This paper makes the relationship more precise by interpreting the DP state transition graph as a weighted decision diagram and incorporating the state-dependent costs of DP into the theory of decision diagrams. It generalizes a well-known uniqueness theorem by showing that, for a given optimization problem and variable ordering, there is a unique reduced weighted decision diagram with “canonical” edge costs. This can lead to simplification of DP models by transforming the costs to canonical costs and reducing the diagram, as illustrated by a standard inventory management problem. The paper then extends the relationship between decision diagrams and DP by introducing the concept of nonserial decision diagrams as a counterpart of nonserial dynamic programming.

Keywords

Feasible Solution Dynamic Programming Terminal Node Binary Decision Diagram Unit Production Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27, 509–516 (1978)CrossRefGoogle Scholar
  2. 2.
    Andersen, H.R.: An introduction to binary decision diagrams. Lecture notes, available online, IT University of Copenhagen (1997)Google Scholar
  3. 3.
    Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM Jorunal on Algebraic and Discrete Mathematics 8, 277–284 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arnborg, S., Proskurowski, A.: Characterization and recognition of partial k-trees. SIAM Jorunal on Algebraic and Discrete Mathematics 7, 305–314 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and Bayesian inference. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 340–351 (2003)Google Scholar
  7. 7.
    Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with backtracking search. Journal of Artificial Intelligence Research 34, 391–442 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Beame, P., Impagliazzo, R., Pitassi, T., Segerlind, N.: Memoization and DPLL: Formula caching proof systems. In: 18th IEEE Annual Conference on Computational Complexity, pp. 248–259 (2003)Google Scholar
  9. 9.
    Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Behle, M., Eisenbrand, F.: 0/1 vertex and facet enumeration with BDDs. In: Proceedings of the 9th Workshop on Algorithm Engineering and Experiments and the 4th Workshop on Analytic Algorithms and Combinatorics, pp. 158–165 (2007)Google Scholar
  11. 11.
    Behle, M.: Binary Decision Diagrams and Integer Programming. PhD thesis, Max Planck Institute for Computer Science (2007)Google Scholar
  12. 12.
    Bellman, R.: The theory of dynamic programming. Bulletin of the American Mathematical Society 60, 503–516 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bellman, R.: Dynamic programming. Priceton University Press, Princeton (1957)zbMATHGoogle Scholar
  14. 14.
    Bergman, D., Ciré, A.A., van Hoeve, W.-J., Hooker, J.N.: Optimization bounds from binary decision diagrams. Technical report, Carnegie Mellon University (2012)Google Scholar
  15. 15.
    Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Bertele, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, New York (1972)zbMATHGoogle Scholar
  17. 17.
    Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn., vol. 1, 2. Athena Scientific, Nashua (2001)zbMATHGoogle Scholar
  18. 18.
    Bollig, B., Sauerhoff, M., Sieling, D., Wegener, I.: Binary decision diagrams. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 473–505. Cambridge University Press, Cambridge (2010)Google Scholar
  19. 19.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers C-35, 677–691 (1986)CrossRefGoogle Scholar
  20. 20.
    Chhajed, D., Lowe, T.J.: Solving structured multifacility location problems efficiently. Transportation Science 28, 104–115 (1994)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ciré, A.A., van Hoeve, W.-J.: MDD propagation for disjunctive scheduling. In: Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS), pp. 11–19. AAAI Press (2012)Google Scholar
  22. 22.
    Crama, Y., Hansen, P., Jaumard, B.: The basic algorithm for pseudoboolean programming revisited. Discrete Applied Mathematics 29, 171–185 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dechter, R.: Bucket elimination: A unifying framework for several probabilistic inference algorithms. In: Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 1996), Portland, OR, pp. 211–219 (1996)Google Scholar
  24. 24.
    Denardo, E.V.: Dynamic Programming: Models and Applications. Dover Publications, Mineola (2003)zbMATHGoogle Scholar
  25. 25.
    Hadžić, T., Hooker, J.N.: Postoptimality analysis for integer programming using binary decision diagrams. Presented at GICOLAG Workshop (Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry), Vienna. Technical report, Carnegie Mellon University (2006)Google Scholar
  26. 26.
    Hadžić, T., Hooker, J.N.: Cost-bounded binary decision diagrams for 0-1 programming. Technical report, Carnegie Mellon University (2007)Google Scholar
  27. 27.
    Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Huang, J., Darwiche, A.: DPLL with a trace: From SAT to knowledge compilation. In: International Joint Conference on Artificial Intelligence (IJCAI 2005), vol. 19, pp. 156–162. Lawrence Erlbaum Associates (2005)Google Scholar
  30. 30.
    Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B 50, 157–224 (1988)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal 38, 985–999 (1959)Google Scholar
  32. 32.
    Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Diumensionality, 2nd edn. Wiley (2011)Google Scholar
  33. 33.
    Shafer, G., Shenoy, P.P., Mellouli, K.: Propagating belief functions in qualitative markov trees. International Journal of Approximate Reasoning 1, 349–400 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Shenoy, P.P., Shafer, G.: Propagating belief functions with local computation. IEEE Expert 1, 43–52 (1986)CrossRefGoogle Scholar
  35. 35.
    Sieling, D., Wegener, I.: NC-algorithms for operations on binary decision diagrams. Parallel Processing Letters 3, 3–12 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • John N. Hooker
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations