Some New Tractable Classes of CSPs and Their Relations with Backtracking Algorithms

  • Achref El Mouelhi
  • Philippe Jégou
  • Cyril Terrioux
  • Bruno Zanuttini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)


In this paper, we investigate the complexity of algorithms for solving CSPs which are classically implemented in real practical solvers, such as Forward Checking or Bactracking with Arc Consistency (RFL or MAC).. We introduce a new parameter for measuring their complexity and then we derive new complexity bounds. By relating the complexity of CSP algorithms to graph-theoretical parameters, our analysis allows us to define new tractable classes, which can be solved directly by the usual CSP algorithms in polynomial time, and without the need to recognize the classes in advance. So, our approach allows us to propose new tractable classes of CSPs that are naturally exploited by solvers, which indicates new ways to explain in some cases the practical efficiency of classical search algorithms.


Time Complexity Search Tree Constraint Satisfaction Problem Tractable Classis Chordal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)Google Scholar
  2. 2.
    Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction problems. Artificial Intelligence 14, 263–313 (1980)CrossRefGoogle Scholar
  3. 3.
    Nadel, B.: Tree Search and Arc Consistency in Constraint-Satisfaction Algorithms. In: Search in Artificial Intelligence, pp. 287–342. Springer (1988)Google Scholar
  4. 4.
    Sabin, D., Freuder, E.C.: Contradicting Conventional Wisdom in Constraint Satisfaction. In: Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 10–20. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Bessière, C., Meseguer, P., Freuder, E.C., Larrosa, J.: On forward checking for non-binary constraint satisfaction. Artificial Intelligence 141, 205–224 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Freuder, E.: A Sufficient Condition for Backtrack-Free Search. JACM 29(1), 24–32 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decomposition Methods. Artificial Intelligence 124, 343–382 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Givry, S., Schiex, T., Verfaillie, G.: Decomposition arborescente et cohérence locale souple dans les CSP pondérés. In: Proceedings of JFPC 2006 (2006)Google Scholar
  9. 9.
    Purvis, L., Jeavons, P.: Constraint tractability theory and its application to the product development process for a constraint-based scheduler. In: Proceedings of the 1st International Conference on The Practical Application of Constraint Technologies and Logic Programming, pp. 63–79 (1999); This paper was awarded First Prize in the Constraints Technologies area of PACLP 1999Google Scholar
  10. 10.
    Rauzy, A.: Polynomial restrictions of SAT: What can be done with an efficient implementation of the Davis and Putnam’s procedure. In: Montanari, U., Rossi, F. (eds.) CP 1995. LNCS, vol. 976, pp. 515–532. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Jégou, P., Ndiaye, S., Terrioux, C.: A new evaluation of forward checking and its consequences on efficiency of tools for decomposition of CSPs. In: ICTAI (1), pp. 486–490 (2008)Google Scholar
  12. 12.
    Ordyniak, S., Paulusma, D., Szeider, S.: Satisfiability of acyclic and almost acyclic CNF formulas. In: FSTTCS, pp. 84–95 (2010)Google Scholar
  13. 13.
    Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite Constraint Satisfaction Problems. In: Proceedings of AAAI 1993, Washington, DC, pp. 731–736 (1993)Google Scholar
  14. 14.
    Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  15. 15.
    Cohen, D.A.: A New Class of Binary CSPs for which Arc-Consistency Is a Decision Procedure. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 807–811. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Salamon, A.Z., Jeavons, P.G.: Perfect Constraints Are Tractable. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    El Mouelhi, A.: Generalized micro-structures for non-binary CSP. In: Doctoral Programme CP, pp. 13–18 (2012),
  18. 18.
    Dechter, R., Pearl, J.: Tree-Clustering for Constraint Networks. Artificial Intelligence 38, 353–366 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rossi, F., Petrie, C., Dhar, V.: On the equivalence of constraint satisfaction problems. In: Proceedings of the 9th European Conference on Artificial Intelligence, pp. 550–556 (1990)Google Scholar
  20. 20.
    Wood, D.R.: On the maximum number of cliques in a graph. Graphs and Combinatorics 23, 337–352 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Dujmovic, V., Fijavz, G., Joret, G., Sulanke, T., Wood, D.R.: On the maximum number of cliques in a graph embedded in a surface. European J. Combinatorics 32(8), 1244–1252 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chmeiss, A., Jégou, P.: A generalization of chordal graphs and the maximum clique problem. Information Processing Letters 62, 111–120 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Third International CSP Solver Competition (2008),
  25. 25.
    Cooper, M., Jeavons, P., Salamon, A.: Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination. Artificial Intelligence 174, 570–584 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete Mathematics and Theoretical Computer Science 9, 127–136 (2007)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cohen, D.A., Cooper, M.C., Green, M.J., Marx, D.: On guaranteeing polynomially bounded search tree size. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 160–171. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Achref El Mouelhi
    • 1
  • Philippe Jégou
    • 1
  • Cyril Terrioux
    • 1
  • Bruno Zanuttini
    • 2
    • 3
  1. 1.LSIS - UMR CNRS 7296Aix-Marseille UniversitéMarseille Cedex 20France
  2. 2.Normandie UniversitéFrance
  3. 3.GREYC, CNRS UMR 6072, ENSICAENUniversité de Caen Basse-NormandieCaen CedexFrance

Personalised recommendations