Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time.


Child Node Mixed Integer Linear Program Domain Propagation Linear Programming Relaxation Dual Bound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The Computer Journal 8(3), 250–255 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Mitra, G.: Investigation of some branch and bound strategies for the solution of mixed integer linear programs. Mathematical Programming 4, 155–170 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed-integer programming. INFORMS Journal on Computing 11(2), 173–187 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research Letters 33, 42–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In: Wren, A. (ed.) Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling, pp. 269–280. North Holland, Amsterdam (1981)Google Scholar
  7. 7.
    Owen, J.H., Mehrotra, S.: Experimental results on using general disjunctions in branch-and-bound for general-integer linear programs. Computational Optimization and Applications 20, 159–170 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mahajan, A., Ralphs, T.K.: Experiments with branching using general disjunctions. In: Chinneck, J.W., Kristjansson, B., Saltzman, M.J. (eds.) Operations Research and Cyber-Infrastructure. Operations Research/Computer Science Interfaces Series, vol. 47, pp. 101–118. Springer, US (2009)CrossRefGoogle Scholar
  9. 9.
    Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Mathematical Programming 128, 403–436 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general disjunctions. Mathematical Programming 130, 225–247 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Borndörfer, R., Ferreira, C.E., Martin, A.: Decomposing matrices into blocks. SIAM J. Optim. 9(1), 236–269 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Lodi, A., Ralphs, T., Rossi, F., Smriglio, S.: Interdiction branching. Technical Report OR/09/10, DEIS, Università di Bologna (2009)Google Scholar
  13. 13.
    Patel, J., Chinneck, J.: Active-constraint variable ordering for faster feasibility of mixed integer linear programs. Mathematical Programming 110, 445–474 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.: Information-based branching schemes for binary linear mixed integer problems. Mathematical Programming Computation 1, 249–293 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Fischetti, M., Monaci, M.: Backdoor branching. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 183–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Gilpin, A., Sandholm, T.: Information-theoretic approaches to branching in search. Discrete Optimization 8(2), 147–159 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G., Ribiere, G., Vincent, O.: Experiments in mixed-integer linear programming. Mathematical Programming 1, 76–94 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of traveling salesman problems. Documenta Mathematica J.DMV Extra Volume ICM III, 645–656 (1998)Google Scholar
  19. 19.
    Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)Google Scholar
  20. 20.
    Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Apt, K.R.: Principles of Constraint Programming. Cambridge University Press, Cambridge (2003)zbMATHCrossRefGoogle Scholar
  22. 22.
    Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)Google Scholar
  23. 23.
    Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA Journal on Computing 6, 445–454 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Fügenschuh, A., Martin, A.: Computational integer programming and cutting planes. In: Aardal, K., Nemhauser, G.L., Weismantel, R. (eds.) Discrete Optimization. Handbooks in Operations Research and Management Science, vol. 12, pp. 69–122. Elsevier (2005)Google Scholar
  25. 25.
    Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima (58), 12–15 (June 1998)Google Scholar
  26. 26.
    Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4), 1–12 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming Computation 3(2), 103–163 (2011)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Universität Berlin (1996)Google Scholar
  30. 30.
    Gamrath, G.: Improving strong branching by propagation. Technical Report 12-46, ZIB, Takustr. 7, 14195 Berlin (2012)Google Scholar
  31. 31.
    Berthold, T., Salvagnin, D.: Cloud branching. Technical Report 13-01, ZIB, Takustr. 7, 14195 Berlin (2013)Google Scholar
  32. 32.
    Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. OR Letters 40(3), 159–164 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP – a parallel extension of SCIP. In: Bischof, C., Hegering, H.G., Nagel, W.E., Wittum, G. (eds.) Competence in High Performance Computing 2010, pp. 135–148 (2012)Google Scholar
  34. 34.
    Shinano, Y., Berthold, T., Heinz, S., Koch, T., Winkler, M., Achterberg, T.: ParaSCIP – a parallel extension of SCIP. Technical Report ZR 11-10, Zuse Institute Berlin (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerald Gamrath
    • 1
  1. 1.Zuse Institute BerlinBerlinGermany

Personalised recommendations