A Lagrangian Relaxation Based Forward-Backward Improvement Heuristic for Maximising the Net Present Value of Resource-Constrained Projects

  • Hanyu Gu
  • Andreas Schutt
  • Peter J. Stuckey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)


In this paper we propose a forward-backward improvement heuristic for the variant of resource-constrained project scheduling problem aiming to maximise the net present value of a project. It relies on the Lagrangian relaxation method to generate an initial set of schedules which are then improved by the iterative forward/backward scheduling technique. It greatly improves the performance of the Lagrangian relaxation based heuristics in the literature and is a strong competitor to the best meta-heuristics. We also embed this heuristic into a state-of-the-art CP solver. Experimentation carried out on a comprehensive set of test data indicates we compare favorably with the state of the art.


Project Schedule Lagrangian Relaxation Scatter Search Project Schedule Problem Constrain Project Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research 112(1), 3–41 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Debels, D., Vanhoucke, M.: A decomposition-based genetic algorithm for the resource-constrained project-scheduling problem. Operations Research 55(3), 457–469 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Gu, H.Y.: Computation of approximate alpha-points for large scale single machine scheduling problem. Computers & OR 35(10), 3262–3275 (2008)zbMATHCrossRefGoogle Scholar
  4. 4.
    Gu, H., Stuckey, P.J., Wallace, M.G.: Maximising the net present value of large resource-constrained projects. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 767–781. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Gu, H., Xi, Y., Tao, J.: Randomized Lagrangian heuristic based on Nash equilibrium for large scale single machine scheduling problem. In: Proceedings of the 22nd IEEE International Symposium on Intelligent Control, pp. 464–468 (2007)Google Scholar
  6. 6.
    Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for resource constrained project scheduling. European Journal of Operational Research 127, 394–407 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research 207(1), 1–14 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Herroelen, W.S., Demeulemeester, E.L., De Reyck, B.: A classification scheme for project scheduling. In: Weglarz, J. (ed.) Project Scheduling. International Series in Operations Research and Management Science, vol. 14, pp. 1–26. Kluwer Academic Publishers (1999)Google Scholar
  9. 9.
    Icmeli, O., Erengüç, S.S.: A branch and bound procedure for the resource constrained project scheduling problem with discounted cash flows. Management Science 42(10), 1395–1408 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Kimms, A.: Maximizing the net present value of a project under resource constraints using a Lagrangian relaxation based heuristic with tight upper bounds. Annals of Operations Research 102, 221–236 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research 174, 23–37 (2006)zbMATHCrossRefGoogle Scholar
  12. 12.
    Li, K., Willis, R.: An iterative scheduling technique for resource-constrained project scheduling. European Journal of Operational Research 56, 370–379 (1992)zbMATHCrossRefGoogle Scholar
  13. 13.
    Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Proc. Let. 47(4), 173–180 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Möhring, R.H., Schulz, A.S., Stork, F., Uetz, M.: Solving project scheduling problems by minimum cut computations. Management Science 49(3), 330–350 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Neumann, K., Zimmermann, J.: Exact and truncated branch-and-bound procedures for resource-constrained project scheduling with discounted cash flows and general temporal constraints. Central European Journal of Operations Research 10(4), 357–380 (2002)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Russell, A.H.: Cash flows in networks. Management Science 16(5), 357–373 (1970)zbMATHCrossRefGoogle Scholar
  18. 18.
    Savelsbergh, M., Uma, R., Wein, J.: An experimental study of LP-based approximation algorithms for scheduling problems. INFORMS J. on Computing 17, 123–136 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Schutt, A., Chu, G., Stuckey, P.J., Wallace, M.G.: Maximising the net present value for resource-constrained project scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 362–378. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Schutt, A., Feydy, T., Stuckey, P.J.: Explaining time-table-edge-finding propagation for the cumulative resource constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 234–250. Springer, Heidelberg (2013)Google Scholar
  21. 21.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sprecher, A., Kolisch, R., Drexl, A.: Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem. European Journal of Operational Research 80, 94–102 (1995)zbMATHCrossRefGoogle Scholar
  23. 23.
    Vanhoucke, M.: A scatter search heuristic for maximising the net present value of a resource constrained project with fixed activity cash flows. International Journal of Production Research 48(7), 1983–2001 (2010)zbMATHCrossRefGoogle Scholar
  24. 24.
    Vanhoucke, M., Demeulemeester, E.L., Herroelen, W.S.: On maximizing the net present value of a project under renewable resource constraints. Management Science 47, 1113–1121 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Zhu, D., Padman, R.: A metaheuristic scheduling procedure for resource-constrained projects with cash flows. Naval Research Logistics 46, 912–927 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hanyu Gu
    • 1
  • Andreas Schutt
    • 1
  • Peter J. Stuckey
    • 1
  1. 1.National ICT Australia, Department of Computing and Information SystemsThe University of MelbourneAustralia

Personalised recommendations