Mixed Integer Programming vs. Logic-Based Benders Decomposition for Planning and Scheduling

  • André Ciré
  • Elvin Coban
  • John N. Hooker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)


A recent paper by Heinz and Beck (CPAIOR 2012) found that mixed integer software has become competitive with or superior to logic-based Benders decomposition for the solution of facility assignment and scheduling problems. Their implementation of Benders differs, however, from that described in the literature they cite and therefore results in much slower performance than previously reported. We find that when correctly implemented, the Benders method remains 2 to 3 orders of magnitude faster than the latest commercial mixed integer software on larger instances, thus reversing the conclusion of the earlier paper.


Schedule Problem Constraint Programming Master Problem Bender Decomposition Good Feasible Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aron, I., Hooker, J.N., Yunes, T.H.: SIMPL: A system for integrating optimization techniques. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 21–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Beck, J.C., Ku, W.-Y.: Personal communication (September 14, 2012)Google Scholar
  3. 3.
    Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benini, L., Bertozzi, D., Guerri, A., Milano, M.: Allocation and scheduling for MPSoCs via decomposition and no-good generation. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 107–121. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Cambazard, H., Hladik, P.-E., Déplanche, A.-M., Jussien, N., Trinquet, Y.: Decomposition and learning for a hard real time task allocation problem. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 153–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Chu, Y., Xia, Q.: Generating Benders cuts for a class of integer programming problems. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 127–141. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Coban, E., Hooker, J.N.: Single-facility scheduling over long time horizons by logic-based benders decomposition. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 87–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Corréa, A.I., Langevin, A., Rousseau, L.M.: Dispatching and conflict-free routing of automated guided vehicles: A hybrid approach combining constraint programming and mixed integer programming. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 370–378. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Harjunkoski, I., Grossmann, I.E.: A decomposition approach for the scheduling of a steel plant production. Computers and Chemical Engineering 25, 1647–1660 (2001)CrossRefGoogle Scholar
  10. 10.
    Harjunkoski, I., Grossmann, I.E.: Decomposition techniques for multistage scheduling problems using mixed-integer and constraint programming methods. Computers and Chemical Engineering 26, 1533–1552 (2002)CrossRefGoogle Scholar
  11. 11.
    Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based hybrids for scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 211–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization and Constraint Satisfaction. Wiley, New York (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hooker, J.N.: Planning and scheduling problem instances (with documentation), website (2004),
  15. 15.
    Hooker, J.N.: A hybrid method for planning and scheduling. Constraints 10, 385–401 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Hooker, J.N.: An integrated method for planning and scheduling to minimize tardiness. Constraints 11, 139–157 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Hooker, J.N.: Integrated Methods for Optimization. Springer (2007)Google Scholar
  19. 19.
    Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations Research 55, 588–602 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hooker, J.N.: Integrated Methods for Optimization, 2nd edn. Springer (2012)Google Scholar
  21. 21.
    Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Hooker, J.N., Yan, H.: Logic circuit verification by Benders decomposition. In: Saraswat, V., Van Hentenryck, P. (eds.) Principles and Practice of Constraint Programming: The Newport Papers, pp. 267–288. MIT Press, Cambridge (1995)Google Scholar
  23. 23.
    Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing 13, 258–276 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Maravelias, C.T., Grossmann, I.E.: Using MILP and CP for the scheduling of batch chemical processes. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Terekhov, D., Beck, J.C., Brown, K.N.: Solving a stochastic queueing design and control problem with constraint programming. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2005), pp. 261–266 (2005)Google Scholar
  26. 26.
    Thorsteinsson, E.S.: Branch-and-check: A hybrid framework integrating mixed integer programming and constraint logic programming. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 16–30. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Timpe, C.: Solving planning and scheduling problems with combined integer and constraint programming. OR Spectrum 24, 431–448 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Yunes, T.H., Aron, I., Hooker, J.N.: An integrated solver for optimization problems. Operations Research 58, 342–356 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • André Ciré
    • 1
  • Elvin Coban
    • 1
  • John N. Hooker
    • 1
  1. 1.Carnegie Mellon UniversityUSA

Personalised recommendations