Advertisement

Recent Improvements Using Constraint Integer Programming for Resource Allocation and Scheduling

  • Stefan Heinz
  • Wen-Yang Ku
  • J. Christopher Beck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)

Abstract

Recently, we compared the performance of mixed-integer programming (MIP), constraint programming (CP), and constraint integer programming (CIP) to a state-of-the-art logic-based Benders manual decomposition (LBBD) for a resource allocation/scheduling problem. For a simple linear relaxation, the LBBD and CIP models deliver comparable performance with MIP also performing well. Here we show that algorithmic developments in CIP plus the use of an existing tighter relaxation substantially improve one of the CIP approaches. Furthermore, the use of the same relaxation in LBBD and MIP models significantly improves their performance. While such a result is known for LBBD, to the best of our knowledge, the other results are novel. Our experiments show that both CIP and MIP approaches are competitive with LBBD in terms of the number of problems solved to proven optimality, though MIP is about three times slower on average. Further, unlike the LBBD and CIP approaches, the MIP model is able to obtain provably high-quality solutions for all problem instances.

Keywords

Schedule Problem Constraint Programming Master Problem Linear Programming Relaxation Primal Heuristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based hybrids for scheduling. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 211–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Hooker, J.N.: Integrated Methods for Optimization. Springer (2007)Google Scholar
  3. 3.
    Beck, J.C.: Checking-up on branch-and-check. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 84–98. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1, 33–42 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hooker, J.N.: Planning and scheduling to minimize tardiness. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 314–327. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Benders, J.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hooker, J.N.: Planning and scheduling by logic-based Benders decomposition. Operations Research 55, 588–602 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Yunes, T.H., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems. Operations Research 58(2), 342–356 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)Google Scholar
  11. 11.
    Achterberg, T.: SCIP: Solving Constraint Integer Programs. Mathematical Programming Computation 1(1), 1–41 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Heinz, S., Schulz, J., Beck, J.C.: Using dual presolving reductions to reformulate cumulative constraints. ZIB-Report 12-37, Zuse Institute Berlin (2012)Google Scholar
  13. 13.
    Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling. Kluwer Academic Publishers (2001)Google Scholar
  14. 14.
    Beck, J.C., Fox, M.S.: Constraint directed techniques for scheduling with alternative activities. Artificial Intelligence 121(1-2), 211–250 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Heinz, S., Schulz, J.: Explanations for the cumulative constraint: An experimental study. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 400–409. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator. Constraints 16(3), 250–282 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Heinz, S., Beck, J.C.: Reconsidering mixed integer programming and MIP-based hybrids for scheduling. ZIB-Report 12-05, Zuse Institute Berlin (2012)Google Scholar
  18. 18.
    Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Technische Universität Berlin (1996)Google Scholar
  19. 19.
    Beldiceanu, N., Carlsson, M., Poder, E.: New filtering for the cumulative constraint in the context of non-overlapping rectangles. In: Trick, M.A. (ed.) CPAIOR 2008. LNCS, vol. 5015, pp. 21–35. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Fattahi, P., Saidi Mehrabad, M., Jolai, F.: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing 18(3), 331–342 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Heinz
    • 1
  • Wen-Yang Ku
    • 2
  • J. Christopher Beck
    • 2
  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations