Advertisement

On Solving Mixed-Integer Constraint Satisfaction Problems with Unbounded Variables

  • Hermann Schichl
  • Arnold Neumaier
  • Mihály Csaba Markót
  • Ferenc Domes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7874)

Abstract

Many mixed-integer constraint satisfaction problems and global optimization problems contain some variables with unbounded domains. Their solution by branch and bound methods to global optimality poses special challenges as the search region is infinitely extended. Many usually strong bounding methods lose their efficiency or fail altogether when infinite domains are involved. Most implemented branch and bound solvers add artificial bounds to make the problem bounded, or require the user to add these. However, if these bounds are too small, they may exclude a solution, while when they are too large, the search in the resulting huge but bounded region may be very inefficient. Moreover, if the global solver must provide a rigorous guarantee (as for the use in computer-assisted proofs), such artificial bounds are not permitted without justification by proof.

We developed methods based on compactification and projective geometry as well as asymptotic analysis to cope with the unboundedness in a rigorous manner. Based on projective geometry we implemented two different versions of the basic idea, namely (i) projective constraint propagation, and (ii) projective transformation of the variables, in the rigorous global solvers COCONUT and GloptLab. Numerical tests demonstrate the capability of the new technique, combined with standard pruning methods, to rigorously solve unbounded global problems. In addition, we present a generalization of projective transformation based on asymptotic analysis.

Compactification and projective transformation, as well as asymptotic analysis, are fruitless in discrete situations but they can very well be applied to compute bounded relaxations, and we will present methods for doing that in an efficient manner.

Keywords

Mixed-integer CSPs constraint propagation relaxation methods unbounded variables interval analysis directed acyclic graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benhamou, F., Goualard, F.: Universally Quantified Interval Constraints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 67–82. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box Consistency. In: Proceedings of the International Conference on Logic Programming (ICLP 1999), Las Cruces, USA, pp. 230–244 (1999)Google Scholar
  3. 3.
    Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming, 32–81 (1997)Google Scholar
  4. 4.
    Berz, M., Makino, K.: Verified integration of odes and flows using differential algebraic methods on high-order taylor models. Reliable Computing 4, 361–369 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berz, M.: COSY INFINITY version 8 reference manual. Technical report, National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich., MSUCL–1008 (1997)Google Scholar
  6. 6.
    Domes, F.: Gloptlab-a configurable framework for solving continuous, algebraic CSPs. In: IntCP, Int. WS on Interval Analysis, Constraint Propagation, Applications, at CP Conference, pp. 1–16 (2009)Google Scholar
  7. 7.
    Domes, F.: Gloptlab: a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems. Optimization Methods & Software 24(4-5), 727–747 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Domes, F., Neumaier, A.: Verified global optimization with gloptlab. PAMM 7(1), 1020101–1020102 (2008)CrossRefGoogle Scholar
  9. 9.
    Eiermann, M.C.: Adaptive Berechnung von Integraltransformationen mit Fehlerschranken. PhD thesis, Institut für Angewandte Mathematik der Albert–Ludwigs–Universität Freiburg im Breisgau (October 1989)Google Scholar
  10. 10.
    Granvilliers, L., Goualard, F., Benhamou, F.: Box Consistency through Weak Box Consistency. In: Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 1999), pp. 373–380 (November 1999)Google Scholar
  11. 11.
    Griewank, A., Corliss, G.F.: Automatic Differentiation of Algorithms. SIAM Publications, Philadelphia (1991)zbMATHGoogle Scholar
  12. 12.
    Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  13. 13.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, 1st edn. Springer (2001)Google Scholar
  14. 14.
    Kearfott, R.: Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems. Computing 47(2), 169–191 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part iconvex underestimating problems. Mathematical Programming 10(1), 147–175 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Moore, R.E.: Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD thesis, Appl. Math. Statist. Lab. Rep. 25. Stanford University (1962)Google Scholar
  17. 17.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  18. 18.
    Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)zbMATHGoogle Scholar
  19. 19.
    Neumaier, A.: Taylor forms - use and limits. Reliable Computing 9, 43–79 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Neumaier, A.: Complete search in continuous global optimization and constraint satisfaction. Acta Numerica 13(1), 271–369 (2004)MathSciNetGoogle Scholar
  21. 21.
    Ninin, J., Messine, F., Hansen, P.: A reliable affine relaxation method for global optimization (2010); Optimzation OnlineGoogle Scholar
  22. 22.
    Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–138 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Schichl, H.: Global optimization in the COCONUT project. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Numerical Software with Result Verification. LNCS, vol. 2991, pp. 243–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Schichl, H., Markót, M.C., et al.: The COCONUT Environment. Software, http://www.mat.univie.ac.at/coconut-environment
  25. 25.
    Schichl, H., Markót, M.C.: Algorithmic differentiation techniques for global optimization in the coconut environment. Optimization Methods and Software 27(2), 359–372 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Schichl, H., Neumaier, A.: Exclusion regions for systems of equations. SIAM Journal on Numerical Analysis 42(1), 383–408 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. Journal of Global Optimization 33(4), 541–562 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.H., Nguyen, T.V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Silaghi, M.-C., Sam-Haroud, D., Faltings, B.V.: Search Techniques for Non-linear Constraint Satisfaction Problems with Inequalities. In: Stroulia, E., Matwin, S. (eds.) AI 2001. LNCS (LNAI), vol. 2056, pp. 183–193. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  30. 30.
    Stolfi, J., Andrade, M., Comba, J., Van Iwaarden, R.: Affine arithmetic: a correlation-sensitive variant of interval arithmetic, Web document (1994) Google Scholar
  31. 31.
    Van Hentenryck, P.: Numerica: A Modeling Language for Global Optimization. In: Proceedings of IJCAI 1997 (1997)Google Scholar
  32. 32.
    Vu, X.H., Sam-Haroud, D., Silaghi, M.C.: Numerical Constraint Satisfaction Problems with Non-isolated Solutions. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 194–210. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Vu, X., Schichl, H., Sam-Haroud, D.: Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems. In: 16th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2004, pp. 72–81. IEEE (2004)Google Scholar
  34. 34.
    Vu, X., Schichl, H., Sam-Haroud, D.: Interval propagation and search on directed acyclic graphs for numerical constraint solving. Journal of Global Optimization 45(4), 499–531 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hermann Schichl
    • 1
  • Arnold Neumaier
    • 1
  • Mihály Csaba Markót
    • 1
  • Ferenc Domes
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaAustria

Personalised recommendations