Skip to main content

Abstract

Orbital shrinking is a newly developed technique in the MIP community to deal with symmetry issues, which is based on aggregation rather than on symmetry breaking. In a recent work, a hybrid MIP/CP scheme based on orbital shrinking was developed for the multi-activity shift scheduling problem, showing significant improvements over previous pure MIP approaches. In the present paper we show that the scheme above can be extended to a general framework for solving arbitrary symmetric MIP instances. This framework naturally provides a new way for devising hybrid MIP/CP decompositions. Finally, we specialize the above framework to the multiple knapsack problem. Computational results show that the resulting method can be orders of magnitude faster than pure MIP approaches on hard symmetric instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming, pp. 329–376. Elsevier (2006)

    Google Scholar 

  3. Fischetti, M., Liberti, L.: Orbital shrinking. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 48–58. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift scheduling. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 633–646. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96(1), 33–60 (2003)

    Article  MathSciNet  Google Scholar 

  6. McKay, B.D.: Practical graph isomorphism (1981)

    Google Scholar 

  7. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An update. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 113–127. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & OR 24(7), 627–645 (1997)

    Article  Google Scholar 

  9. Pisinger, D.: An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114(3), 528–541 (1999)

    Article  MathSciNet  Google Scholar 

  10. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley (1990)

    Google Scholar 

  11. Shaw, P.: A constraint for bin packing. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 648–662. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Gent, I.P., Walsh, T.: From approximate to optimal solutions: Constructing pruning and propagation rules. In: IJCAI, pp. 1396–1401. Morgan Kaufmann (1997)

    Google Scholar 

  13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock problem. Operations Research 9, 849–859 (1961)

    Article  MathSciNet  Google Scholar 

  14. IBM ILOG: CPLEX 12.4 User’s Manual (2011)

    Google Scholar 

  15. Gecode Team: Gecode: Generic constraint development environment (2012), http://www.gecode.org

  16. Pisinger, D.: Where are the hard knapsack problems? Computers & Operations Research 32, 2271–2284 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salvagnin, D. (2013). Orbital Shrinking: A New Tool for Hybrid MIP/CP Methods. In: Gomes, C., Sellmann, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2013. Lecture Notes in Computer Science, vol 7874. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38171-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38171-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38170-6

  • Online ISBN: 978-3-642-38171-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics