Advertisement

Abstract

This paper presents an improved as well as a completely new version of a mixed integer linear programming (MILP) formulation for solving the quadratic assignment problem (QAP) to global optimum. Both formulations work especially well on instances where at least one of the matrices is sparse. Modification schemes, to decrease the number of unique elements per row in symmetric instances, are presented as well. The modifications will tighten the presented formulations and considerably shorten the computational times. We solved, for the first time ever to proven optimality, the instance esc32b from the quadratic assignment problem library, QAPLIB.

Keywords

Combinatorial optimization Quadratic assignment problem Mixed integer programming Global optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koopmans, T., Beckmann, M.: Assignment problems and location of economic activities. Econometrica 25, 53–76 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    de Carvalho Jr., S., Rahmann, S.: Microarray layout as a quadratic assignment problem. In: Proceedings of the German Conference on Bioinformatics (GCB). Lecture Notes in Informatic, vol. P-83, pp. 11–20 (2006)Google Scholar
  3. 3.
    Ben-David, G., Malah, D.: Bounds on the performance of vector-quantizers under channel errors. IEEE Transactions on Information Theory 51(6), 2227–2235 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Taillard, E.: Comparison of iterative searches for the quadratic assignment problem. Location Science 3(2), 87–105 (1995)zbMATHCrossRefGoogle Scholar
  5. 5.
    Loiola, E., Abreu, N., Boaventura-Netto, P., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. European Journal of Operational Research 176(2), 657–690 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Burkard, R., Çela, D.E., Karisch, S., Rendl, F.: QAPLIB - a quadratic assignment problem library. Journal of Global Optimization 10, 391–403 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Nyberg, A., Westerlund, T.: A new exact discrete linear reformulation of the quadratic assignment problem. European Journal of Operational Research 220(2), 314–319 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Eschermann, B., Wunderlich, H.J.: Optimized synthesis of self-testable finite state machines. In: 20th International Symposium on Fault-Tolerant Computing, FTCS-20. Digest of Papers, pp. 390–397 (June 1990)Google Scholar
  9. 9.
    Fischetti, M., Monaci, M., Salvagnin, D.: Three ideas for the quadratic assignment problem. Operations Research 60, 954–964 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Çela, E.: The Quadratic Assignment Problem Theory and Algorithms. Kluwer Academic Publishers (1998)Google Scholar
  11. 11.
    Gounaris, C.E., Misener, R., Floudas, C.A.: Computational comparison of piecewise linear relaxations for pooling problems. Industrial & Engineering Chemistry Research 48(12), 5742–5766 (2009)CrossRefGoogle Scholar
  12. 12.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Mathematical Programming 126, 147–178 (2011), doi:10.1007/s10107-009-0273-xMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment problem. Journal of the Society for Industrial and Applied Mathematics 10, 305–313 (1962)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Axel Nyberg
    • 1
  • Tapio Westerlund
    • 1
  • Andreas Lundell
    • 1
  1. 1.Process Design and Systems EngineeringÅbo Akademi UniversityÅboFinland

Personalised recommendations