Skip to main content

Bicompletions of Distance Matrices

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7860))

Abstract

In the practice of information extraction, the input data are usually arranged into pattern matrices, and analyzed by the methods of linear algebra and statistics, such as principal component analysis. In some applications, the tacit assumptions of these methods lead to wrong results. The usual reason is that the matrix composition of linear algebra presents information as flowing in waves, whereas it sometimes flows in particles, which seek the shortest paths. This wave-particle duality in computation and information processing has been originally observed by Abramsky. In this paper we pursue a particle view of information, formalized in distance spaces, which generalize metric spaces, but are slightly less general than Lawvere’s generalized metric spaces. In this framework, the task of extracting the ‘principal components’ from a given matrix of data boils down to a bicompletion, in the sense of enriched category theory. We describe the bicompletion construction for distance matrices. The practical goal that motivates this research is to develop a method to estimate the hardness of attack constructions in security.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Archiv der Mathematik 18(4), 369–377 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion, topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51 (1998)

    Article  MATH  Google Scholar 

  4. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer-Verlag New York, Inc., Secaucus (2010)

    Book  MATH  Google Scholar 

  5. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary input. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 553–562. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  6. Isbell, J.R.: Subobjects, adequacy, completeness and categories of algebras. Rozprawy matematyczne. Państwowe Wydawnictwo Naukowe (1964)

    Google Scholar 

  7. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series, vol. 64. Cambridge University Press (1982); Reprinted in Theory and Applications of Categories, vol. 10, pp. 1–136 (2005)

    Google Scholar 

  8. Kelly, J.C.: Bitopological spaces. Proc. London Math. Soc. 13, 71–89 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor. Comput. Sci. 278(1-2), 159–194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano 43, 135–166 (1973)

    Article  MathSciNet  Google Scholar 

  11. Leinster, T.: The magnitude of metric spaces (2010), arxiv.org:1012.5857

    Google Scholar 

  12. Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology (2012) (to appear)

    Google Scholar 

  13. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Graduate texts in computer science. Springer (1997)

    Google Scholar 

  14. MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50 (1936)

    Article  MATH  Google Scholar 

  15. Lane, S.M.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer (1971) (second edition 1997)

    Google Scholar 

  16. Pavlovic, D.: Gaming security by obscurity. In: Gates, C., Hearley, C. (eds.) Proceedings of NSPW 2011, pp. 125–140. ACM, New York (2011), arxiv:1109.5542

    Google Scholar 

  17. Pavlovic, D.: Quantifying and qualifying trust: Spectral decomposition of trust networks. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Pavlovic, D.: Quantitative Concept Analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 260–277. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Pavlovic, D., Smith, D.R.: Software development by refinement. In: Aichernig, B.K., Maibaum, T. (eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support. LNCS, vol. 2757, pp. 267–286. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Smith, D.R.: Composition by colimit and formal software development. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 317–332. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Solomonoff, R.J.: A formal theory of inductive inference. Part I., Part II. Information and Control 7, 1–22, 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2), 61–104 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–10012 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zvonkin, A.K., Levin, L.A.: The complexity of finite objects and the algorithmic concepts of information and randomness. Russian Math. Surveys 25(6), 83–124 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pavlovic, D. (2013). Bicompletions of Distance Matrices. In: Coecke, B., Ong, L., Panangaden, P. (eds) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. Lecture Notes in Computer Science, vol 7860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38164-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38164-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38163-8

  • Online ISBN: 978-3-642-38164-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics