Skip to main content

Part of the book series: SpringerBriefs in Water Science and Technology ((BRIEFSWATER))

  • 732 Accesses

Abstract

A novel heterotrophic-autotrophic denitrification (HAD) approach supported by granulated spongy iron, pine bark and mixed bacteria was proposed for remediation of nitrate contaminated groundwater in an aerobic environment. The HAD involves biological deoxygenation, chemical reduction (CR) of nitrate and dissolved oxygen (DO), heterotrophic denitrification (HD) and autotrophic denitrification (AD). The experimental results showed 0.121 d, 0.142 d and 1.905 d were needed to completely remove DO by HAD, spongy iron and mixed bacteria respectively. Spongy iron played a dominant role in deoxygenation in the HAD. After 16 days, NO3-N removal was approximately 100, 6.2, 83.1, 4.5 % by HAD, CR, HD, AD, respectively. CR, HD and AD all contributed to the overall removal of NO3-N, but HD was the most important denitrification mechanism. There existed symbiotic, synergistic and promotive effects of CR, HD and AD within the HAD. The different environmental parameters (e.g. water temperature) showed different effects on HAD. HAD was capable of providing steady denitrification rate (1.233–1.397 mg/L/d) for 3.5 months. Pine bark could provide sufficient organic carbon, spongy iron could steadily remove DO, and microbial activity maintained relatively constant. HAD denitrification was zero order with a reaction rate constant (K) of 1.3220 mg/L/d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACS:

American Chemical Society

AD:

Autotrophic denitrification

BD:

Biological denitrification

BET:

Brunauer-Emmett-Teller

CR:

Chemical reduction

DO:

Dissolved oxygen

DNRA:

Dissimilatory nitrate reduction to ammonium

HAD:

Heterotrophic-autotrophic denitrification

HD:

Heterotrophic denitrification

HRT:

Hydraulic retention time

MDR:

Maximum denitrification rate

MNPR:

Maximum NO3-N percent removal

PRB:

Permeable reactive barrier

RO:

Reverse osmosis

TOC:

Total organic carbon

ZVI:

Zero-valent iron

References

  • Ahn SC, Oh SY, Cha DK (2008) Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J Hazard Mater 156:17–22

    Article  CAS  Google Scholar 

  • APHA, AWWA, WPCF (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Pollution Control Federation (WPCF), Washington, DC

    Google Scholar 

  • Beaubien A, Hu Y, Bellahcen D, Urbain V, Chang J (1995) Monitoring metabolic activity of denitrification processes using gas production measurements. Water Res 29(10):2269–2274

    Article  CAS  Google Scholar 

  • Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Microbiol 42(6):1074–1084

    CAS  Google Scholar 

  • Chang C, Tseng S, Huang H (1999) Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour Technol 69:53–58

    Article  CAS  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695

    Article  CAS  Google Scholar 

  • Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311

    Article  CAS  Google Scholar 

  • Choe SH, Ljestrand HM, Khim J (2004) Nitrate reduction by zero-valent iron under different pH regimes. Appl Geochem 19:335–342

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2005a) Innovative heterotrophic/autotrophic denitrification (HAD) of drinking water: Effect of ZVI on nitrate removal. A265-A270 in Proceedings of the 9th international conference on environmental science and technology. Rhodes island, Greece, 1–3 Sept 2005

    Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2005b) Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water SA 31:229–236

    CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2006) An heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41:1022–1028

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meriç S (2007a) Overview of in situ applicable nitrate removal processes. Desalination 204:46–62

    Article  CAS  Google Scholar 

  • Della Rocca C, Belgiorno V, Meric S (2007b) Heterotrophic/autotrophic denitrification (HAD) of drinking water: Prospective use for permeable reactive barrier. Desalination 210:194–204

    Article  CAS  Google Scholar 

  • Devlin JF, Eedy R, Butler BJ (2000) The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer. J Contam Hydrol 46:81–97

    Article  CAS  Google Scholar 

  • Elefsiniotis P, Li D (2006) The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem Eng J 28:148–155

    Article  CAS  Google Scholar 

  • Greenan CM, Moorman TB, Kaspar TC, Parkin TB, Jaynes DB (2006) Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual 35:824–829

    Article  CAS  Google Scholar 

  • Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80

    Article  Google Scholar 

  • Gómez MA, Hontoria E, González-López J (2002) Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter. J Hazard Mater 90:267–278

    Article  Google Scholar 

  • Haugen KS, Semmens MJ, Novak PJ (2002) A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res 36:3497–3506

    Article  CAS  Google Scholar 

  • Huang CP, Wang HW, Chiu PC (1998) Nitrate reduction by metallic iron. Water Res 32:2257–2264

    Article  CAS  Google Scholar 

  • Huang G, Fallowfield H, Guan H, Liu F (2012) Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification (HAD) approach in an aerobic environment. Water Air Soil Pollut 223(7):4029–4038

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642

    Article  CAS  Google Scholar 

  • Hunter WJ (2003) Accumulation of nitrite in denitrifying barriers when phosphate is limiting. J Contam Hydrol 66:79–91

    Article  CAS  Google Scholar 

  • Karanasios KA, Vasiliadou IA, Pavlou S, Vayenasa DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37

    Article  CAS  Google Scholar 

  • Kielemoes J, De Boever P, Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34:663–671

    Article  CAS  Google Scholar 

  • Kim H, Seagren EA, Davis AP (2003) Engineered bioretention for removal of nitrate from stormwater runoff. Water Environ Res 75:355–367

    Article  CAS  Google Scholar 

  • Lee K, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052

    Article  CAS  Google Scholar 

  • Liao C-H, Kang S-F, Hsu Y-W (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Res 37:4109–4118

    Article  CAS  Google Scholar 

  • Liou YH, Lo SL, Lin CJ, Kuan WH, Weng SC (2005) Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. J Hazard Mater 127:102–110

    Article  CAS  Google Scholar 

  • Ovez B, Ozgen S, Yuksel M (2006) Biological denitrification in drinking water using Glycyrrhiza glabra and Arunda donax as the carbon source. Process Biochem 41:1539–1544

    Article  CAS  Google Scholar 

  • Piñar G, Ramos JL (1998) Recombinant Klebsiella oxytoca strains with improved efficiency in removal of high nitrate loads. Appl Environ Microbiol 64:5016–5019

    Google Scholar 

  • Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long-term performance of in situ reactive barriers for nitrate remediation. Ground Water 38:689–695

    Article  CAS  Google Scholar 

  • Robertson WD, Ptacek CJ, Brown SJ (2007) Geochemical and hydrogeological impacts of a wood particle barrier treating nitrate and perchlorate in ground water. Ground Water Monit Remediat 27(2):85–95

    Article  CAS  Google Scholar 

  • Robertson WD, Vogan JL, Lombardo PS (2008) Nitrate removal rates in a 15-year-old permeable reactive barrier treating septic system nitrate. Ground Water Monit Remediat 28:65–72

    CAS  Google Scholar 

  • Rodríguez-Maroto JM, Garcia-Herruzo F, Garcia-Rubio A, Sampaio LA (2009) Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere 74:804–809

    Article  Google Scholar 

  • Saliling WJB, Westerman PW, Losordo TM (2007) Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacult Eng 37:222–233

    Article  Google Scholar 

  • Schnobrich MR, Chaplin BP, Semmens MJ, Novak PJ (2007) Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations. Water Res 41:1869–1876

    Article  CAS  Google Scholar 

  • Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72:257–262

    Article  CAS  Google Scholar 

  • Siantar DP, Schreier CG, Chou CS, Reinhard M (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30:2315–2322

    Article  CAS  Google Scholar 

  • Smith RL, Ceazan ML, Brooks MH (1994) Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination. Appl Environ Microbiol 60:1949–1955

    CAS  Google Scholar 

  • Smith RL, Miller DN, Brooks MH, Widdowson MA, Killingstad MW (2001) In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination. Environ Sci Technol 35:196–203

    Article  CAS  Google Scholar 

  • Soares MIM, Abeliovich A (1998) Wheat straw as substrate for water denitrification. Water Res 32:3790–3794

    Article  CAS  Google Scholar 

  • Soares MIM, Brenner A, Yevzori A, Messalem R, Leroux Y, Abeliovich A (2000) Denitrification of groundwater: pilot-plant testing of cotton-packed bioreactor and post-microfiltration. Wat Sci Technol 42:353–359

    CAS  Google Scholar 

  • Straub KL, Buchholz-Cleven BEE (1998) Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl Environ Microbiol 64:4846–4856

    CAS  Google Scholar 

  • Su C, Puls RW (2004) Nitrate Reduction by Zerovalent Iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38:2715–2720

    Article  CAS  Google Scholar 

  • Su C, Puls RW (2007) Removal of added nitrate in cotton burr compost, mulch compost, and peat: mechanisms and potential use for groundwater nitrate remediation. Chemosphere 66:91–98

    Article  CAS  Google Scholar 

  • Till BA, Weathers LJ, Alvarez PJJ (1998) Fe(0)-supported autotrophic denitrification. Environ Sci Technol 32:634–639

    Article  CAS  Google Scholar 

  • Tsai YJ, Chou FC, Cheng T-C (2009) Coupled acidification and ultrasound with iron enhances nitrate reduction. J Hazard Mater 163:743–747

    Article  CAS  Google Scholar 

  • Vasiliadou IA, Pavlou S, Vayenas DV (2006) A kinetic study of hydrogenotrophic denitrification. Process Biochem 41:1401–1408

    Article  CAS  Google Scholar 

  • Volokita M, Abeliovich A, Soares MIM (1996a) Denitrification of groundwater using cotton as energy source. Wat Sci Technol 34(1–2):379–385

    CAS  Google Scholar 

  • Volokita M, Belkin S, Abeliovich A, Soares MIM (1996b) Biological denitrification of drinking water using newspaper. Water Res 30:965–971

    Article  CAS  Google Scholar 

  • Westerhoff P, James J (2003) Nitrate removal in zero-valent iron packed columns. Water Res 37:1818–1830

    Article  CAS  Google Scholar 

  • Yang GCC, Lee HL (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res 39:884–894

    Article  CAS  Google Scholar 

  • Weber KA, Pollock J, Cole KA, O’Connor SM, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72:686–694

    Article  CAS  Google Scholar 

  • Yin SX, Chen D, Chen LM, Edis R (2002) Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils. Soil Biol Biochem 34:1131–1137

    Article  CAS  Google Scholar 

  • Zhang TC, Lampe DG (1999) Sulfur: limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: Batch experiments. Water Res 33:599–608

    Article  CAS  Google Scholar 

  • Zhang Y, Zhong F, Xi S, Wang X, Li J (2009) Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. J Hazard Mater 170:203–209

    Article  CAS  Google Scholar 

  • Zhao X, Meng XL, Wang JL (2009) Biological denitrification of drinking water using biodegradable polymer. Int J Environ Pollut 38:328–338

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, F., Huang, G., Fallowfield, H., Guan, H., Zhu, L., Hu, H. (2014). Heterotrophic-Autotrophic Denitrification. In: Study on Heterotrophic-Autotrophic Denitrification Permeable Reactive Barriers (HAD PRBs) for In Situ Groundwater Remediation. SpringerBriefs in Water Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38154-6_2

Download citation

Publish with us

Policies and ethics