Skip to main content

Allelopathy

  • Chapter
  • First Online:
Parasitic Orobanchaceae

Abstract

Allelopathy offers a direct opportunity for the host plant to counter development of a parasitic plant by deploying antagonistic secondary metabolites at the early stages of infestation. Little progress has been made in exploiting allelopathy for controlling parasitic plants, largely because of weakened defence secondary metabolism of crop plants as a consequence of breeding for other priorities. However, forage legumes of the genus Desmodium when grown as an intercrop substantially interfere with infestation of maize by Striga spp. through allelopathy. One aspect of the chemistry underpinning this control involves C-glycosylated flavonoids, specifically 6-C-α-l-arabinopyranosyl-8-C-β-d-glucopyranosylapigenin. Currently, the genes for enzymes involved in the crucial step in the biosynthesis of C-glycosylated flavonoids are being identified, with attempts to transfer such genes to cowpea. This approach to exploit allelopathy could potentially produce food crops benefiting directly from this Striga-controlling trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amudavi DM, Khan ZR, Wanyama JM, Midega CAO, Pittchar J, Hassanali A, Pickett JA (2009a) Evaluation of farmers’ field days as a dissemination tool for push-pull technology in Western Kenya. Crop Prot 28:225–235

    Article  Google Scholar 

  • Amudavi DM, Khan ZR, Wanyama JM, Midega CAO, Pittchar J, Nyangau IM, Hassanali A, Pickett JA (2009b) Assessment of technical efficiency of farmer teachers in the uptake and dissemination of push-pull technology in Western Kenya. Crop Prot 28:987–996

    Article  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions – an update. Pest Manag Sci 63:308–326

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Evans KM, Gershater MC, Puschmann H, Steel PG, Edwards R (2009) The C-glycosylation of flavonoids in cereals. J Biol Chem 284:17926–17934

    Article  CAS  PubMed  Google Scholar 

  • Carsky RJ, Singh L, Ndikawa R (1994) Suppression of Striga hermonthica on sorghum using a cowpea intercrop. Exp Agric 30:349–358

    Article  Google Scholar 

  • Du Y, Chu H, Chu IK, Lo C (2010) CYP93G2 is a flavanone 2-hydroxylase required for C-glycosylflavone biosynthesis in rice. Plant Physiol 154:324–333

    Article  CAS  PubMed  Google Scholar 

  • Guchu SM, Yenesew A, Tsanuo MK, Gikonyo NK, Pickett JA, Hooper AM, Hassanali A (2007) C-methylated and C-prenylated isoflavonoids from root extract of Desmodium uncinatum. Phytochemistry 68:646–651

    Article  CAS  PubMed  Google Scholar 

  • Hamilton ML, Caulfield JC, Pickett JA, Hooper AM (2009) C-Glucosylflavonoid biosynthesis from 2-hydroxynaringenin by Desmodium uncinatum (Jacq.) (Fabaceae). Tetrahedron Lett 50:5656–5659

    Article  CAS  Google Scholar 

  • Hamilton ML, Kuate SP, Brazier-Hicks M, Caulfield JC, Rose R, Edwards R, Torto B, Pickett JA, Hooper AM (2012) Elucidation of the biosynthesis of the di-C-glycosylflavone isoschaftoside, an allelopathic component from Desmodium spp. that inhibits Striga spp. development. Phytochemistry 84:169–176

    Article  CAS  PubMed  Google Scholar 

  • Hassanali A, Herren H, Khan ZR, Pickett JA, Woodcock CM (2008) Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philos Trans R Soc B 363:611–621

    Article  Google Scholar 

  • Hess DE, Dodo H (2004) Potential for sesame to contribute to integrated control of Striga hermonthica in the West African Sahel. Crop Prot 23:515–522

    Article  Google Scholar 

  • Hooper AM, Tsanuo MK, Chamberlain K, Tittcomb K, Scholes J, Hassanali A, Khan ZR, Pickett JA (2010) Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudates, is an allelochemical against the development of Striga. Phytochemistry 71:904–908

    Article  CAS  PubMed  Google Scholar 

  • Kersher F, Franz G (1987) Biosynthesis of vitexin and isovitexin: enzymatic synthesis of the C-glucosylflavones vitexin and isovitexin with an enzyme preparation from Fagopyrum esculentum M. seedlings. Z Naturforsch 42c:519–524

    Google Scholar 

  • Kersher F, Franz G (1988) Isolation and some properties of an UDP-Glucose: 2-hydroxyflavanone-6(or 8)-C-glucosyltransferase from Fagopyrum esculentum M. cotyledons. J Plant Physiol 132:110–115

    Article  Google Scholar 

  • Khan ZR, Ampong-Nyarko K, Chiliswa P, Hassanali A, Kimani S, Lwande W, Overholt WA, Pickett JA, Smart LE, Wadhams LJ, Woodcock CM (1997) Intercropping increases parasitism of pests. Nature 388:631–632

    Article  CAS  Google Scholar 

  • Khan ZR, Pickett JA, van den Berg J, Wadhams LJ, Woodcock CM (2000) Exploiting chemical ecology and species diversity: stem borer and Striga control for maize and sorghum in Africa. Pest Manag Sci 56:957–962

    Article  CAS  Google Scholar 

  • Khan ZR, Hassanali A, Overholt W, Khamis TM, Hooper AM, Pickett JA, Wadhams LJ, Woodcock CM (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J Chem Ecol 28:1871–1885

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Midega CAO, Hassanali A, Pickett JA, Wadhams LJ, Wanjoya A (2006a) Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium, Desmodium intortum. Int J Pest Manag 52:297–302

    Article  Google Scholar 

  • Khan ZR, Pickett JA, Wadhams LJ, Hassanali A, Midega CAO (2006b) Combined control of Striga and stemborers by maize-Desmodium spp. intercrops. Crop Prot 25:989–995

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Hassanali A, Pickett JA, Wadhams LJ (2007) Assessment of different legumes for the control of Striga hermonthica in maize and sorghum. Crop Sci 47:728–734

    Article  Google Scholar 

  • Khan ZR, Amudavi DM, Midega CAO, Wanyama JM, Pickett JA (2008a) Farmers’ perceptions of a ‘push-pull’ technology for control of cereal stemborers and Striga weed in western Kenya. Crop Prot 27:976–987

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Amudavi DM, Hassanali A, Pickett JA (2008b) On-farm evaluation of the ‘push-pull’ technology for the control of stemborers and Striga weed on maize in western Kenya. Field Crops Res 106:224–233

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Njuguna EM, Amudavi DM, Wanyama JW, Pickett JA (2008c) Economic performance of push-pull’ technology for stemborer and Striga control in smallholder farming systems in western Kenya. Crop Prot 27:1084–1097

    Article  Google Scholar 

  • Khan ZR, Pickett JA, Hassanali A, Hooper AM, Midega CAO (2008d) Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res 48:302–306

    Article  CAS  Google Scholar 

  • Khan ZR, Midega CAO, Wanyama JM, Amudavi DM, Hassanali A, Pittchar J, Pickett JA (2009) Integration of edible beans (Phaseolus vulgaris L.) into the push-pull technology developed for stemborer and Striga control in maize-based cropping systems. Crop Prot 28:997–1006

    Article  Google Scholar 

  • Khan ZR, Midega CAO, Bruce TJA, Hooper AM, Pickett JA (2010a) Exploiting phytochemicals for developing a `push-pull’ crop protection strategy for cereal farmers in Africa. J Exp Bot 61:4185–4196

    Article  CAS  PubMed  Google Scholar 

  • Khan ZR, Pickett JA, Hamilton ML, Hassanali A, Hooper AM, Kuate SP, Midega CAO, Pittchar J, Torto B (2010b) Control of stem borers and Striga in African cereals: a low input push-pull approach with rapidly expanding impact. Aspects Appl Biol 56:145–151

    Google Scholar 

  • Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094

    Article  CAS  PubMed  Google Scholar 

  • Macias FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy – a natural alternative for weed control. Pest Manag Sci 63:327–348

    Article  CAS  PubMed  Google Scholar 

  • Midega CAO, Khan ZR, van den Berg J, Ogol CKPO, Bruce TJ, Pickett JA (2009) Non-target effects of the ‘push–pull’ habitat management strategy: parasitoid activity and soil fauna abundance. Crop Prot 28:1045–1051

    Article  Google Scholar 

  • Midega CAO, Khan ZR, Amudavi DM, Pittchar J, Pickett JA (2010) Integrated management of Striga hermonthica and cereal stemborers in finger millet (Eleusine coracana (L.) Gaertn.) through intercropping with Desmodium intortum. Int J Pest Manag 56:145–151

    Article  Google Scholar 

  • Pickett JA, Hamilton ML, Hooper AM, Khan ZR, Midega CAO (2010) Companion cropping to manage parasitic plants. Annu Rev Phytopathol 48:161–177

    Article  CAS  PubMed  Google Scholar 

  • Tenebe VA, Kamara HM (2002) Effect of Striga hermonthica on the growth characteristics of sorghum intercropped with groundnut varieties. J Agron Crop Sci 188:376–381

    Article  Google Scholar 

  • Tsanuo MK, Hassanali A, Hooper AM, Khan ZR, Kaberia F, Pickett JA, Wadhams LJ (2003) Isoflavanones from the allelopathic aqueous root exudates of Desmodium uncinatum. Phytochemistry 64:265–273

    Article  CAS  PubMed  Google Scholar 

  • Vanlauwe B, Kanampiu F, Odhiambo G, De Groote H, Wadhams LJ, Khan ZR (2008) Integrated management of Striga hermonthica, stemborers, and declining soil fertility in western Kenya. Field Crops Res 107:102–115

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Gatsby Charitable Foundation (UK), Kilimo Trust (East Africa), the Rockefeller Foundation and the Biovision Foundation (Switzerland). Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) and was funded through the BBSRC/DFID SARID initiative. The authors also acknowledge the assistance provided by icipe field staff, Ministry of Agriculture extension staff and the farmers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Pickett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pickett, J.A., Hooper, A.M., Midega, C.A.O., Khan, Z.R. (2013). Allelopathy. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_25

Download citation

Publish with us

Policies and ethics