Skip to main content

Genomic Evolution in Orobanchaceae

  • Chapter
  • First Online:
Parasitic Orobanchaceae

Abstract

The broomrape family (Orobanchaceae) is an excellent model system for comparative evolutionary studies that focus on various genomic aspects associated with or being the result of the transition to heterotrophy. This chapter provides a family-wide summary of our current knowledge of the extraordinarily dynamic genomic evolution in Orobanchaceae. Several candidate genes that have been newly recruited in parasite-specific pathways have been identified by transcriptome sequencing. While little information is available on the evolution of mitochondrial genomes, studies of plastid genes and genomes of members of Orobanchaceae bring to light the first insights into the complex and differential patterns of reductive evolution of plastid chromosomes following the loss of photosynthesis. The chapter also discusses the need for large-scale transcriptome and genome sequencing to determine basic parasite-specific genetics and genome dynamics that may have potential for the development of novel strategies to control weedy Orobanchaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter uses the most recent taxonomic changes outlined in Chap. 14.

References

  • Acquisti C, Elser JJ, Kumar S (2009a) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956

    PubMed  CAS  Google Scholar 

  • Acquisti C, Kumar S, Elser JJ (2009b) Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus. Proc R Soc B 276:2605–2610

    PubMed  CAS  Google Scholar 

  • Adams KL, Clements MJ, Vaughn JC (1998) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46:689–696

    PubMed  CAS  Google Scholar 

  • Albach DC, Li H-Q, Zhao N, Jensen SR (2007) Molecular systematics and phytochemistry of Rehmannia (Scrophulariaceae). Biochem Syst Ecol 35:293–300

    CAS  Google Scholar 

  • Alkatib S, Fleischmann TT, Scharff LB, Bock R (2012) Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res 40:6713–6724

    PubMed  CAS  Google Scholar 

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobanche aegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotechnol J 7:487–498

    PubMed  CAS  Google Scholar 

  • Aly R, Hamamouch N, Abu-Nassar J, Wolf S, Joel DM, Eizenberg H, Kaisler E, Cramer C, Gal-On A, Westwood JH (2011) Movement of protein and macromolecules between host plants and the parasitic weed Phelipanche aegyptiaca Pers. Plant Cell Rep 30:2233–2241

    PubMed  CAS  Google Scholar 

  • Bandaranayake PCG, Filappova T, Tomilov AA, Tomilova NB, Jamison-McClung D, Ngo Q, Inoue K, Yoder JI (2010) A single-electron reducing quinone oxidoreductase Is necessary to induce haustorium development in the root parasitic plant Triphysaria. Plant Cell 22:1404–1419

    PubMed  CAS  Google Scholar 

  • Barker WR, Kiehn M, Vitek E (1988) Chromosome numbers in Australian Euphrasia (Scrophulariaceae). Plant Syst Evol 158:161–164

    Google Scholar 

  • Barkman TJ, Lim S-H, Salleh KM, Nais J (2004) Mitochondrial DNA sequences reveal the photosynthetic relatives of Rafflesia, the world’s largest flower. Proc Natl Acad Sci USA 101:787–792

    PubMed  CAS  Google Scholar 

  • Barkman TJ, McNeal JR, Lim SH, Coat G, Croom HB, Young ND, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248

    PubMed  Google Scholar 

  • Bennett JR, Mathews S (2006) Phylogeny of the parasitic plant family Orobanchaceae inferred from phytochrome A. Am J Bot 93:1039–1051

    PubMed  CAS  Google Scholar 

  • Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546

    PubMed  CAS  Google Scholar 

  • Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752

    PubMed  CAS  Google Scholar 

  • Botanga CJ, Timko MP (2005) Genetic structure and analysis of host and non-host interactions of Striga gesnerioides. Phytopathology 95:1166–1173

    PubMed  CAS  Google Scholar 

  • Botanga CJ, Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49:1351–1365

    PubMed  Google Scholar 

  • Botanga CJ, Kling JG, Berner DK, Timko MP (2002) Genetic variability of Striga asiatica (L.) Kuntz based on AFLP analysis and host-parasite interaction. Euphytica 128:375–388

    CAS  Google Scholar 

  • Boudreau E, Turmel M, Goldschmidt-Clermont M, Rochaix J-D, Sivan S, Michaels A, Leu S (1997) A large open reading frame (orf1995) in the chloroplast DNA of Chlamydomonas reinhardtii encodes an essential protein. Mol Gen Genet 253:649–653

    PubMed  CAS  Google Scholar 

  • Braukmann T, Stefanović S (2012) Plastid genome evolution in mycoheterotrophic Ericaceae. Plant Mol Biol 79:5–20

    PubMed  CAS  Google Scholar 

  • Castro M, Castro S, Loureiro J (2012) Genome size variation and incidence of polyploidy in Scrophulariaceae sensu lato from the Iberian Peninsula. AoB Plants 2012: pls037. doi:10.1093/aobpla/pls037

    PubMed  Google Scholar 

  • Cho KY, Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial cox1 gene during evolution of the Araceae family. Mol Biol Evol 16:1155–1165

    PubMed  CAS  Google Scholar 

  • Colwell AE (1994) Genome evolution in a non-photosynthetic plant, Conopholis americana. Ph.D. Thesis, Washington University. Division of Biology and Biomedical Sciences, St. Louis, WA, USA

    Google Scholar 

  • Cummings MP, Welschmeyer NA (1998) Pigment composition of putatively achlorophyllous angiosperms. Plant Syst Evol 210:105–111

    CAS  Google Scholar 

  • Cusimano N, Zhang L-B, Renner SS (2008) Reevaluation of the cox1 group I intron in Araceae and angiosperms indicates a history dominated by loss rather than horizontal transfer. Mol Biol Evol 25:265–276

    PubMed  CAS  Google Scholar 

  • Davis C, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678

    PubMed  CAS  Google Scholar 

  • Davis CC, Anderson WR, Wurdack KJ (2005) Gene transfer from a parasitic flowering plant to a fern. Proc R Soc B 272:2237–2242

    PubMed  CAS  Google Scholar 

  • de Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12

    PubMed  Google Scholar 

  • Delannoy E, Fujii S, des Francs CC, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    PubMed  CAS  Google Scholar 

  • Delavault PM, Thalouarn P (2002) The obligate root parasite Orobanche cumana exhibits several rbcL sequences. Gene 297:85–92

    PubMed  CAS  Google Scholar 

  • Delavault PM, Sakanyan V, Thalouarn P (1995) Divergent evolution of two plastid genes, rbcL and atpB, in a non-photosynthetic parasitic plant. Plant Mol Biol 29:1071–1079

    PubMed  CAS  Google Scholar 

  • Delavault PM, Russo NM, Lusson NA, Thalouarn P (1996) Organization of the reduced plastid genome of Lathraea clandestina, an achlorophyllous parasitic plant. Physiol Plant 96:674–682

    CAS  Google Scholar 

  • dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348:337–339

    PubMed  CAS  Google Scholar 

  • dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA 94:7367–7372

    PubMed  CAS  Google Scholar 

  • Downie SR, Palmer JD (1992) Restriction site mapping of the chloroplast DNA inverted repeat – a molecular phylogeny of the Asteridae. Ann Mo Bot Gard 79:266–283

    Google Scholar 

  • Drescher A, Ruf S, Calsa T, Carrer H, Bock R (2000) The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J 22:97–104

    PubMed  CAS  Google Scholar 

  • Duff RJ, Nickrent DL (1997) Characterization of mitochondrial small-subunit ribosomal RNAs from holoparasitic plants. J Mol Evol 45:631–639

    PubMed  CAS  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733

    PubMed  CAS  Google Scholar 

  • Estep MC, Gowda BS, Huang K, Timko MP, Bennetzen JL (2012) Genomic characterization for parasitic weeds of the genus Striga by sample sequence analysis. Plant Genome 5:30–41

    CAS  Google Scholar 

  • Fedorov AA (ed) (1969) Khromosomnye chisla tsetkovykh rasteny (Chromosome numbers of flowering plants). Izdatel’stvo Nauka, Leningrad

    Google Scholar 

  • Fernandez-Aparicio M, Rubiales D, Bandaranayake PCG, Yoder J, Westwood J (2011) Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods 7:36

    PubMed  CAS  Google Scholar 

  • Filipowicz N, Renner SS (2010) The worldwide holoparasitic Apodanthaceae confidently placed in the Cucurbitales by nuclear and mitochondrial gene trees. BMC Evol Biol 10:219

    PubMed  Google Scholar 

  • Funk H, Berg S, Krupinska K, Maier U, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    PubMed  Google Scholar 

  • Goldblatt P, Johnson DE (1979) Index to plant chromosome numbers. Missouri Botanical Garden, St. Louis. http://www.tropicos.org/Project/IPCN. Accessed August 2012

  • Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot 88:851–858

    CAS  Google Scholar 

  • Hanson L, Leitch IJ, Bennett MD (2002) Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew. Accessed via the Kew C-Value Database at data.kew.org/cvalues/ in August 2012

    Google Scholar 

  • He F, Zhang X, Hu J-Y, Turck F, Dong X, Goebel U, Borevitz JO, de Meaux J (2012) Widespread interspecific divergence in cis-regulation of transposable elements in the Arabidopsis genus. Mol Biol Evol 29:1081–1091

    PubMed  CAS  Google Scholar 

  • Hjertson ML (1995) Taxonomy, phylogeny and biogeography of Lindenbergia (Scrophulariaceae). Bot J Linn Soc 119:265–321

    Google Scholar 

  • Honaas L, Wafula E, Yang Z, Der J, Wickett N, Altman N, Taylor C, Yoder J, Timko M, Westwood J, dePamphilis (2013) Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC Plant Biol 13:9

    Google Scholar 

  • Ishida JK, Yoshida S, Ito M, Namba S, Shirasu K (2011) Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum. PLoS One 6(10):e25802. doi:10.1371/journal.pone.0025802

    PubMed  CAS  Google Scholar 

  • Iwo GA, Husaini SWH, Olaniyan GO (1993) Cytological observations and distribution of Striga species in central part of Nigeria. Feddes Repertorium 104:497–501

    Google Scholar 

  • Knauf U, Hachtel W (2002) The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii. Mol Genet Genomics 267:492–497

    PubMed  CAS  Google Scholar 

  • Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A (1996) Copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585

    PubMed  CAS  Google Scholar 

  • Knoop V, Volkmar U, Hecht J, Grewe F (2011) Mitochondrial genome evolution in the plant lineage. In: Kempten F (ed) Advances in plant biology – mitochondrial genomes. Springer Science & Business, New Yorlk, pp 3–29

    Google Scholar 

  • Kondo K, Segawa M, Musselman LJ, Mann WF (1981) Comparative ecological study of the chromosome races in certain root parasitic plants of the southeastern U.S.A. Bol Soc Broteriana 53:793–807

    Google Scholar 

  • Krause K (2011) Piecing together the puzzle of parasitic plant plastome evolution. Planta 234:647–656

    PubMed  CAS  Google Scholar 

  • Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823

    PubMed  CAS  Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: an alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    PubMed  CAS  Google Scholar 

  • LeBlanc M, Kim G, Westwood JH (2012) RNA trafficking in parasitic plant systems. Front Plant Sci 3:203

    PubMed  CAS  Google Scholar 

  • Lechat M-M, Pouvreau J-B, Péron T et al (2012) PrCYP707A1, an ABA catabolic gene, is a key component of Phelipanche ramosa seed germination in response to the strigolactone analogue GR24. J Exp Bot 63:5311–5322

    PubMed  CAS  Google Scholar 

  • Leebens-Mack JH, dePamphilis CW (2002) Power analysis of tests for loss of selective constraint in cave crayfish and nonphotosynthetic plant lineages. Mol Biol Evol 19:1292–1302

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc Lond 82:651–663

    Google Scholar 

  • Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646

    PubMed  CAS  Google Scholar 

  • Lemaire B, Huysmans S, Smets E, Merckx V (2011) Rate accelerations in nuclear 18S rDNA of mycoheterotrophic and parasitic angiosperms. J Plant Res 124:561–576

    PubMed  CAS  Google Scholar 

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    PubMed  Google Scholar 

  • Lohan AJ, Wolfe KH (1998) A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genetics 150:425–433

    PubMed  CAS  Google Scholar 

  • Lohse M, Drechsel O, Bock R (2007) Organellar Genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274

    PubMed  CAS  Google Scholar 

  • Lusson NA, Delavault PM, Thalouarn P (1998) The rbcL gene from the non-photosynthetic parasite Lathraea clandestina is not transcribed by a plastid-encoded RNA polymerase. Curr Genet 34:212–215

    PubMed  CAS  Google Scholar 

  • Manen J-F, Habashi C, Jeanmonod D, Park J-M, Schneeweiss GM (2004) Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol 33:482–500

    PubMed  CAS  Google Scholar 

  • Martin NJ (1983) Nuclear DNA variation in the Australasian Loranthaceae. In: Calder M, Berhnhardt P (eds) Biology of mistletoes. Academic Press, New York, pp 277–293

    Google Scholar 

  • Matvienko M, Torres MJ, Yoder JI (2001) Transcriptional responses in the hemiparasitic plant Triphysaria versicolor to host plant signals. Plant Physiol 127:272–282

    PubMed  CAS  Google Scholar 

  • McNeal JR, Arumugunathan K, Kuehl J, Boore J, dePamphilis C (2007a) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55

    PubMed  Google Scholar 

  • McNeal JR, Kuehl J, Boore J, de Pamphilis C (2007b) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57

    PubMed  Google Scholar 

  • Moore DM (1982) Flora Europaea Check-List and chromosome index. Cambridge University Press, Cambridge UK

    Google Scholar 

  • Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a nonphotosynthetic plant – Intact, missing and pseudogenes. EMBO J 10:3281–3288

    PubMed  CAS  Google Scholar 

  • Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Gene transfer from parasitic to host plants. Nature 432:165–166

    PubMed  CAS  Google Scholar 

  • Mower JP, Stefanovic S, Hao W, Gummow J, Jain K, Ahmed D, Palmer J (2010) Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes. BMC Biol 8:150

    PubMed  CAS  Google Scholar 

  • Nagl W, Fusenig HP (1979) Types of chromatin organization in plant nuclei. Plant Syst Evol Suppl 2:221–223

    Google Scholar 

  • Nickrent DL, Duff RJ (1996) Molecular studies or parasitic plants using ribosomal RNA. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Junta de Andalucia, Dirección General de Investigación Agraria, Cordoba, Spain, pp 28–52

    Google Scholar 

  • Nickrent DL, García M (2009) On the brink of holoparasitism: plastome evolution in dwarf mistletoes (Arceuthobium, Viscaceae). J Mol Evol 68:603–615

    PubMed  CAS  Google Scholar 

  • Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russell R, Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4:40

    PubMed  Google Scholar 

  • Park J-M, Manen J-F, Schneeweiss GM (2007a) Horizontal gene transfer of a plastid gene in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Mol Phyl Evol 43:974–985

    CAS  Google Scholar 

  • Park J-M, Schneeweiss GM, Weiss-Schneeweiss H (2007b) Diversity and evolution of Ty1-copia and Ty3-gypsy retroelements in the non-photosynthetic flowering plants Orobanche and Phelipanche (Orobanchaceae). Gene 387:75–86

    PubMed  CAS  Google Scholar 

  • Piednoël M, Aberer AJ, Schneeweiss GM, Macas J, Novak P, Gundlach H, Temsch EM, Renner SS (2012) Next-generation sequencing reveals the impact of repetitive DNA across phylogenetically closely related genomes of Orobanchaceae. Mol Biol Evol 29:3601–3611

    PubMed  Google Scholar 

  • Randle CP, Wolfe AD (2005) The evolution and expression of RBCL in holoparasitic sister-genera Harveya and Hyobanche (Orobanchaceae). Am J Bot 92:1575–1585

    PubMed  CAS  Google Scholar 

  • Renner SS, Bellot S (2012) Horizontal gene transfer in eukaryotes: fungi-to-plant and plant-to-plant transfers of organellar DNA. In: Bock R, Knoop V (eds) Genomics of chloroplasts and mitochondria. Springer, Heidelberg, pp 223–235

    Google Scholar 

  • Rogalski M, Karcher D, Bock R (2008) Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol 15:192–198

    PubMed  CAS  Google Scholar 

  • Sanchez-Puerta MV, Cho Y, Mower JP, Alverson AJ, Palmer JD (2008) Frequent, phylogenetically local horizontal transfer of the cox1 group I intron in flowering plant mitochondria. Mol Biol Evol 25:1762–1777

    PubMed  CAS  Google Scholar 

  • Schäferhoff B, Fleischmann A, Fischer E, Albach D, Borsch T, Heubl G, Müller KF (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10:352

    PubMed  Google Scholar 

  • Schneeweiss GM, Palomeque T, Colwell AE, Weiss-Schneeweiss H (2004) Chromosome numbers and karyotype evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 91:439–448

    PubMed  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    PubMed  CAS  Google Scholar 

  • Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF (2005) Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I intron invasion in angiosperms. Nucleic Acids Res 33:734–744

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M et al (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049

    PubMed  CAS  Google Scholar 

  • Takagi K, Okazawa A, Wada Y, Mongkolchaiyaphruek A, Fukusaki E, Yoneyama K, Takeuchi Y, Kobayashi A (2009) Unique phytochrome responses of the holoparasitic plant Orobanche minor. New Phytol 182:965–974

    PubMed  CAS  Google Scholar 

  • Tank DC, Egger JM, Olmstead RG (2009) Phylogenetic classification of subtribe Castillejinae (Orobanchaceae). Syst Bot 34:182–197

    Google Scholar 

  • Tolbert NE (1997) The C2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–25

    PubMed  CAS  Google Scholar 

  • Tomilov AA, Tomilova NB, Yoder JI (2007) Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059–1071

    PubMed  CAS  Google Scholar 

  • Tomilov AA, Tomilova NB, Wroblewski T, Michelmore R, Yoder JI (2008) Trans-specific gene silencing between host and parasitic plants. Plant J 56:389–397

    PubMed  CAS  Google Scholar 

  • Trakulnaleamsai C, Okazawa A, An C-I, Kajiyama S, Fukusaki E, Yoneyama K, Takeuchi Y, Kobayashi A (2005) Isolation and characterization of a cDNA encoding phytochrome A in the non-photosynthetic parasitic plant, Orobanche minor Sm. Biosci Biotechnol Biochem 69:71–78

    PubMed  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric coxI gene of Peperomia. J Mol Evol 41:563–572

    PubMed  CAS  Google Scholar 

  • Weiss-Schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156

    CAS  Google Scholar 

  • Westwood JH, Yoder JI, Timko MP, dePamphilis CW (2010) The evolution of parasitism in plants. Trends Plant Sci 15:227–235

    PubMed  CAS  Google Scholar 

  • Westwood JH, dePamphilis CW, Das M, Fernández-Aparicio M, Honaas LA, Timko MP, Wafula EK, Wickett NJ, Yoder JI (2012) The Parasitic Plant Genome Project: new tools for understanding the biology of Orobanche and Striga. Weed Sci 60:295–306

    CAS  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    PubMed  CAS  Google Scholar 

  • Wickett NJ, Honaas LA, Wafula EK, Das M, Huang K, Wu B, Landherr L, Timko MP, Yoder J, Westwood JH, dePamphilis CW (2011) Transcriptomes of the parasitic plant family Orobanchaceae reveal surprising conservation of chlorophyll synthesis. Curr Biol 21:2098–2104

    PubMed  CAS  Google Scholar 

  • Wimpee CF, Wrobel R, Garvin D (1991) A divergent plastid genome in Conopholis americana, an achlorophyllous parasitic plant. Plant Mol Biol 17(166):161

    PubMed  CAS  Google Scholar 

  • Wimpee CF, Morgan R, Wrobel RL (1992) Loss of transfer RNA genes from the plastid 16S–23S ribosomal RNA gene spacer in a parasitic plant. Curr Genet 21:417–422

    PubMed  CAS  Google Scholar 

  • Wolfe KH (1994) Similarity between putative ATP-binding sites in land plant plastid ORF2280 proteins and the FtsH/CDC48 family of ATPases. Curr Genet 25:379–383

    PubMed  CAS  Google Scholar 

  • Wolfe AD, dePamphilis CW (1997) Alternate paths of evolution for the photosynthetic gene rbcL in four nonphotosynthetic species of Orobanche. Plant Mol Biol 33:965–977

    PubMed  CAS  Google Scholar 

  • Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol 15:1243–1258

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC, Palmer JD (1992a) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992b) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    PubMed  CAS  Google Scholar 

  • Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829

    PubMed  CAS  Google Scholar 

  • Wood TE, Takebayashic N, Abrahamsen MS, Mayrose I, Greenspoond PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879

    PubMed  CAS  Google Scholar 

  • Xi Z, Bradley R, Wurdack K, Wong KM, Sugumaran M, Bomblies K, Rest J, Davis C (2012) Horizontal transfer of expressed genes in a parasitic flowering plant. BMC Genomics 13:227

    PubMed  CAS  Google Scholar 

  • Yoshida S, Ishida JK, Kamal N, Ali A, Namba S, Shirasu K (2010) A full-length enriched cDNA library and expressed sequence tag analysis of the parasitic weed, Striga hermonthica. BMC Plant Biol 10:55

    PubMed  Google Scholar 

  • Young ND, dePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evol Biol 5:16

    PubMed  Google Scholar 

  • Zonneveld BJM (2010) New record holders for maximum genome size in Eudicots and Monocots. J Bot 2010:4 pages

    Google Scholar 

  • Zonneveld BJM, Leitch IJ, Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Ann Bot 96:229–244

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Gerald Schneeweiss for the helpful comments on this manuscript and I am grateful to Kai Müller for critical discussion. I also thank Najibeh Ataei, Dietmar Quandt, and Hanna Weiss-Schneeweiss for sharing their unpublished data. Support from the Austrian Science Fund (FWF grant P19404 to G. Schneeweiss), the University of Vienna, and the German Academic Exchange Service (DAAD) for own research is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susann Wicke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wicke, S. (2013). Genomic Evolution in Orobanchaceae. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_15

Download citation

Publish with us

Policies and ethics