Skip to main content

Abstract

Current preserving services in the tropical mountain forest of Southern Ecuador are discussed, with a focus on arbuscular mycorrhizal (AM) fungi, microarthropods (oribatid mites), and protists (testate amoebae). Diversity patterns of AM fungi are described in a comparison of native forest with its anthropogenic replacement system of low plant diversity, while patterns of oribatid mites and testate amoebae are reported along an elevational gradient. Levels of AM fungal richness observed thus far were relatively high on both sites, but not unusually so. Belowground invertebrate richness did not approach that of aboveground invertebrates. Testate amoebae species numbers were relatively high overall, but did not follow a clear altitudinal gradient, in contrast to plant richness and oribatid mites. These results illustrate the complexity of the studied system in Ecuador with respect to the overall compartmentalization of diversity patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566

    Article  PubMed  Google Scholar 

  • Allen EB, Rincón E, Allen MF, Pérez-Jimenez A, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30:261–274

    Article  Google Scholar 

  • Balogh J (1972) The oribatid genera of the world. Hungarian Natural History Museum

    Google Scholar 

  • Balogh P (1988) Oribatid mites from Ecuador (Acari) 1. Acta Zool Hung 34:321–338

    Google Scholar 

  • Balogh J, Balogh P (1988) Oribatid mites of the neotropical region. Elsevier

    Google Scholar 

  • Balogh J, Balogh P (2002) Identification key to Oribatid mites of the Extra-Holarctic regions. Well-Press

    Google Scholar 

  • Balogh P, Gergocs V, Farkas E, Farkas P, Kocsis M, Hufnagel L (2008) Oribatid assamblages of tropical high mountains on some points of the Gondwana-Bridge – a case study. Appl Ecol Environ Res 6:127–158

    Google Scholar 

  • Bamforth SS (2007) Protozoa from aboveground and ground soils of a tropical rain forest in Puerto Rico. Pedobiologia 50:515–525

    Article  Google Scholar 

  • Bastias BA, Huang ZQ, Blumfield T, Xu Z, Cairney JWG (2006) Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biol Biochem 38:3492–3501

    Article  CAS  Google Scholar 

  • Beck E, Harting K, Roos K (2008a) Forest clearing by slash and burn. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 371–374

    Google Scholar 

  • Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valerezo C (2008b) The ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 1–13

    Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Bonnet L (1966) Le peuplement thecamoebien de quelques sols du Chili. Protistologica 2:113–140

    Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setälä H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298:615–618

    Article  PubMed  CAS  Google Scholar 

  • Brehm G, Homeier J, Fielder K (2003) Beta dieversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rain forest. Divers Distrib 9:351–366

    Article  Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Article  Google Scholar 

  • Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, San Diego

    Google Scholar 

  • Cuenca G, de Andrade Z, Escalante G (1998) Diversity of glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719

    Article  CAS  Google Scholar 

  • De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  • Fiedler, K, Brehm, G, Hilt, N, Süßenbach, D, Häuser, CL (2008) Variation of diversity patterns across moth families along a tropical altitudinal gradient. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 167–179

    Google Scholar 

  • Fischer CR, Janos DP, Perry DA, Linderman RG, Sollins P (1994) Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369–377

    Article  Google Scholar 

  • Gavito ME, Pérez-Castillo D, González-Monterrubio CF, Vieyra-Hernández T, Martínez-Trujillo M (2008) High compatibility between arbuscular mycorrhizal fungal communities and seedlings of different land use types in a tropical dry ecosystem. Mycorrhiza 19:47–60

    Article  PubMed  Google Scholar 

  • Göker M, García-Blázquez G, Voglmayr H, Tellería MT, Martín MP (2009) Molecular taxonomy of phytopathogenic fungi: a case study in Peronospora. PLoS One 29:e6319

    Article  Google Scholar 

  • Guadarrama P, Castillo-Argüero S, Ramos-Zapata JA, Camargo-Ricalde SL, Álvarez-Sánchez J (2008) Propagules of arbuscular mycorrhizal fungi in a secondary dry forest of Oaxaca. Mexico Rev Biol Trop 56:269–277

    Google Scholar 

  • Günter S, Gonzalez P, Alvarez G, Aguirre N, Palomeque X, Haubrich F, Weber M (2009) Determinants for successful reforestation of abandoned pastures in the Andes: soil conditions and vegetation cover. For Ecol Manage 258:81–91

    Article  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol Biochem 37:661–671

    Article  CAS  Google Scholar 

  • Haug I, Wubet T, Weiß M, Aguirre N, Weber M, Günter S, Kottke I (2010) Species-rich but distinct arbuscular mycorrhizal communities in reforestation plots on degraded pastures and in neighboring pristine tropical mountain rain forest. Trop Ecol 51:125–148

    CAS  Google Scholar 

  • Heidemann K, Scheu S, Ruess L, Maraun M (2011) Molecular detection of nematode predation and scavenging in oribatid mites: laboratory and field experiments. Soil Biol Biochem 43:2229–2236

    Article  CAS  Google Scholar 

  • Homeier J, Werner FA (2007) Spermatopyta checklist – Reserva Biologica San Francisco (Prov. Zamora-Chinchipe, S. Ecuador). Ecotrop Monogr 4:15–58

    Google Scholar 

  • Illig J, Schatz H, Scheu S, Maraun M (2008) Decomposition and colonization by micro-arthropods of two litter types in a tropical montane rain forest in southern Ecuador. J Trop Ecol 24:1–11

    Article  Google Scholar 

  • Iost S, Makeschin F, Aiby M, Haubrich F (2008) Biotic soil activities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 217–227

    Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Biotropica 12:56–64

    Article  Google Scholar 

  • Johnson NC, Wedin DA (1997) Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol Appl 7:171–182

    Article  Google Scholar 

  • Kempson D, Lloyd M, Ghelardi R (1963) A new extractor for woodland litter. Pedobiologia 3:1–21

    Google Scholar 

  • Kottke I, Haug I (2004) The significance of mycorrhizal diversity of trees in the tropical mountain forest of southern Ecuador. Lyonia 7:49–56

    Google Scholar 

  • Kounda-kiki C, Vaculik A, Ponge JF, Sarthough C (2004) Soil and arthopods in a developmental succession on the Nouragues inselberg (French Guiana). Biol Fertil Soils 40:119–127

    Article  Google Scholar 

  • Krashevska V, Bonkowski M, Maraun M, Scheu S (2007) Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia 51:319–331

    Article  Google Scholar 

  • Krashevska V, Maraun M, Ruess L, Scheu S (2010) Carbon and nutrient limitation of soil microorganisms and microbial grazers in a tropical montane rain forest. Oikos 119:1020–1028

    Article  Google Scholar 

  • Krashevska V, Maraun M, Scheu S (2012a) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests? FEMS Microbiol Ecol 80:603–607

    Article  PubMed  CAS  Google Scholar 

  • Krashevska V, Sandmann D, Maraun M, Scheu S (2012b) Consequences of exclusion of precipitation on microorganisms and microbial consumers in montane tropical rain forests. Oecologia 170:1067–1076

    Article  PubMed  Google Scholar 

  • Kuptz D, Grams TEE, Günter S (2010) Light acclimation of four native tree species in felling gaps within a tropical mountain rainforest. Trees 24:117–127

    Article  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  PubMed  CAS  Google Scholar 

  • Maldonado JD, Tainter FH, Skipper HD, Lacher TE (2000) Arbuscular mycorrhiza inoculum potential in natural and managed tropical montane soils in Costa Rica. Trop Agric 77:27–32

    Google Scholar 

  • Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari:oribatida) patterns, mechanisms and implications for future research. Ecography 23:374–383

    Article  Google Scholar 

  • Maraun M, Illig J, Sandmann D, Krashevska V, Norton RA, Scheu S (2008) Soil fauna. In: Gradients in a tropical mountain ecosystem of Ecuador. In Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 181–192

    Google Scholar 

  • Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003) Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289–297

    Article  PubMed  CAS  Google Scholar 

  • Niedbala W, Illig J (2007) Ptyctimous mites (Acari:Oribatida) from the Ecuadorian rainforest. J Nat Hist 41:771–777

    Article  Google Scholar 

  • Peters T, Diertl K-H, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador. Mt Res Dev 30:344–352

    Article  Google Scholar 

  • Picone C (2000) Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750

    Article  Google Scholar 

  • Plowman KP (1981) Distribution of Cryptostigmata and Mesostigmata (Acari) within the litter and soil layers of two subtropical forests. Austral J Ecol 6:365–374

    Article  Google Scholar 

  • Scheu S (2003) Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47:1–11

    Article  Google Scholar 

  • Scheu S, Theenhaus A, Jones TH (1999) Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119:541–551

    Article  Google Scholar 

  • Scheu S, Ruess L, Bonkowski M (2005) Interactions between microorganisms and soil micro- and mesofauna. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Soil biology, vol 3. Springer, Berlin, pp 253–275

    Google Scholar 

  • Scheu S, Illig J, Eissfeller V, Krashevska V, Sandmann D, Maraun M (2008) The soil fauna of a tropical mountain rainforest in southern Ecuador: structure and functioning. In: Gradstein SR, Homeier J, Gansert D (eds) The tropical mountain forest. Patterns and processes in a biodiversity hotspots. Biodiversity and ecology series, vol 2. Universitätsverlag Göttingen, pp 79–96

    Google Scholar 

  • Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol Biochem 36:1769–1774

    Article  CAS  Google Scholar 

  • Stürmer SL, Siqueira JO (2011) Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21:255–267

    Article  PubMed  Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Wanner M (1989) Zur Morphologie und Ökologie von Thekamöben (Protozoa: Rhizopoda) in Süddeutschen Wäldern. PhD Thesis, Universität Ulm

    Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, Princeton, 392 pp

    Google Scholar 

  • Wardle DA, Bonner KI, Barker GM (2002) Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Funct Ecol 16:585–595

    Article  Google Scholar 

  • Weigmann G (2006) Hornmilben (Oribatida). In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile, vol 76. Goecke & Evers, Keltern, p 520

    Google Scholar 

  • Wilkinson D, Mitchell EAD (2010) Testate amoebae and nutrient cycling; with particular reference to soil. Geomicrobiol J 27:520–533

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias C. Rillig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rillig, M.C. et al. (2013). Diversity in Soil Fungi, Protists, and Microarthropods. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_7

Download citation

Publish with us

Policies and ethics