Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 221))

Abstract

Global terrestrial biodiversity is strongly affected by expanding land use, climate change and nitrogen deposition. This holds especially true for tropical forests which already show large changes due mainly to land use activities. The extent of land use in Ecuador has increased considerably during the last century. An extensive network of primary and secondary roads now opens up most of the western and central areas of the country, while parts of the Oriente have been converted into protected areas. Concerning climate change warming is predicted to be moderate for western Ecuador, while the eastern part of the country will suffer from rising temperatures that will affect a floristic region harbouring one of the global diversity hotspots for vascular plant species. Changes in precipitation are expected to be spatially much less cohesive, with increasing and decreasing amounts of precipitation being unevenly distributed throughout the Andes. The spatial distribution and temporal dynamics of precipitation and wind also regulate the deposition of rainwater-dissolved matter in the mountain ecosystem which results from biomass burning in Amazonia. In this chapter, our current knowledge as to the past development of these major threats of the ecosystem will be discussed focusing on the study area South Ecuador.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Geographical Society of New York (1938) South America 1:1.000.000. New York

    Google Scholar 

  • Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor D, Sommer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315

    Article  Google Scholar 

  • Bebbington A (1993) Sustainable livelihood development in the Andes: local institutions and regional resource use in Ecuador. Dev Policy Rev 11:5–30

    Article  PubMed  CAS  Google Scholar 

  • Bendix J, Rollenbeck R, Richter M, Fabian P, Emck P (2008a) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 63–73

    Chapter  Google Scholar 

  • Bendix J, Rollenbeck R, Fabian P, Emck P, Richter M, Beck E (2008b) Climate variability. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, vol 198, Ecological studies. Springer, Berlin, pp 280–291

    Google Scholar 

  • Bendix J, Behling H, Peters T, Richter M, Beck E (2010) Functional biodiversity and climate change along an altitudinal gradient in a tropical mountain rainforest. In: Tscharntke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change, Environmental Science and Engineering. Subseries Environmental Science. Springer, Berlin, pp 239–268

    Chapter  Google Scholar 

  • Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Global Biogeochem Cycles 22, GB4011

    Google Scholar 

  • Bruhns KO (1994) Ancient south America. Cambridge University Press, Cambridge

    Google Scholar 

  • Brummitt N, Lughadha EN (2003) Biodiversity: where’s hot and where’s not. Conserv Biol 17:1442–1448

    Article  Google Scholar 

  • Colwell RK, Brehm G, Cardelius CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    Article  PubMed  CAS  Google Scholar 

  • Da Rocha GO, Allen AG, Cardoso AA (2005) Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil. Environ Sci Technol 39(14):5293–5301

    Article  PubMed  Google Scholar 

  • De Koning GHJ, Veldkamp A, Fresco LO (1998) Land use in Ecuador: a statistical analysis at different aggregation levels. Agric Ecosyst Environ 70:231–247

    Article  Google Scholar 

  • Dodson CH, Gentry AH (1991) Biological extinction in western Ecuador. Ann Mo Bot Gard 78:273–295

    Article  Google Scholar 

  • Ellenberg H (1979) Man’s influence on tropical mountain ecosystems in south America. J Ecol 67(2):401–416

    Article  Google Scholar 

  • Emck P (2007) A climatology of South Ecuador. With special focus on the major Andean Ridge as Atlantic-Pacific Climate Divide. PhD thesis, University of Erlangen http://www.opus.ub.uni-erlangen.de/opus/frontdoor.php?source_opus=656 Cited 1.12.2011

  • Fabian P, Kohlpaintner M, Rollenbeck R (2005) Biomass burning in the Amazon-fertilizer for the mountainous rain forest in Ecuador. Environ Sci Pollut Res Int 12(5):290–296

    Article  PubMed  CAS  Google Scholar 

  • FAO (2005) State of the world’s forests 2005. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Goerner A, Gloaguen R, Makeschin F (2007) Monitoring of the Ecuadorian mountain rainforest with remote sensing. J Appl Remote Sens 1:013527

    Article  Google Scholar 

  • Göttlicher D, Obregón A, Homeier J, Rollenbeck R, Nauss T, Bendix J (2009) Land cover classification in the Andes of southern Ecuador using Landsat ETM+ data as a basis for SVAT modelling. Int J Remote Sens 30:1867–1886

    Article  Google Scholar 

  • Harden C (1993) Land use, soil erosion, and reservoir sedimentation in an Andean drainage basin in Ecuador. Mt Res Dev 13:177–184

    Article  Google Scholar 

  • Head office of Geodesy and Cartography (1969) World Map 1:2.500.000. German Democratic Republic, Berlin

    Google Scholar 

  • Instituto Geográfico Militar (2000) Mapa del Ecuador 1:1.000.000. Quito, Ecuador

    Google Scholar 

  • Jokisch BD, Lair BM (2002) One last stand? Forests and change on Ecuador’s eastern Cordillera. Geogr Rev 92(2):235–256

    Article  Google Scholar 

  • Keating PL (1997) Mapping vegetation and anthropogenic disturbances in southern Ecuador with remote sensing techniques: implications for park management. Yearb Conf Latin Am Geogr 23:77–90

    Google Scholar 

  • Köster N, Friedrich K, Nieder J, Barthlott W (2009) Conservation of epiphyte diversity in an Andean landscape transformed by human land use. Conserv Biol 23(4):911–919

    Article  PubMed  Google Scholar 

  • Luteyn JL (1992) Páramos: why study them? In: Balslev H, Luteyn JL (eds) Páramo: an Andean ecosystem under human influence. Academic, London, pp 151–170

    Google Scholar 

  • Marquette CM (2006) Settler welfare on tropical forest frontiers in Latin America. Popul Environ 27(5–6):397–444

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutt R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Global climate projections – climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 p

    Google Scholar 

  • Miles L, Grainger A, Philips O (2004) The impact of global climate change on tropical forest biodiversity in Amazonia. Glob Ecol Biogeogr 13:553–565

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystem and human well-being: biodiversity synthesis. World Resources Institute, Washington, DC

    Google Scholar 

  • Mittermeier RA, Robles Gil P, Mittermeier CG (1997) Megadiversity: earth’s biologically wealthiest nations. Monterrey, Mexico

    Google Scholar 

  • Mosandl R, Günter S, Stimm B, Weber M (2008) Ecuador suffers the highest deforestation rate in South America. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies. Springer, Berlin, pp 37–40

    Chapter  Google Scholar 

  • Myers N (1988) Threatened biotas: ‘hot spots’ in tropical forests. Environmentalist 8:187–208

    Article  PubMed  CAS  Google Scholar 

  • Myers N (1993) Tropical forests: the main deforestation fronts. Environ Conserv 20:9–16

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Peters T, Diertl K, Gawlik J, Rankl M, Richter M (2010) Vascular plant diversity in natural and anthropogenic ecosystems in the Andes of southern Ecuador – studies from the Rio San Francisco valley. Mt Res Dev 30:344–352

    Article  Google Scholar 

  • Pimm R, Raven P (2000) Biodiversity – extinction by numbers. Nature 403:843–845

    Article  PubMed  CAS  Google Scholar 

  • Pohle P, Gerique A (2008) Sustainable and non sustainable use of natural resources by indigenous and local communities. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, Ecological studies. Springer, Berlin, pp 331–346

    Chapter  Google Scholar 

  • Pohle P, Gerique A, Park M, Lopez Sandoval MF (2009) Human ecological dimensions in sustainable utilization and conservation of tropical mountain forests under global change in southern Ecuador. In: Tscharnke T, Leuschner C, Veldkamp E, Faust H, Guhardja E, Bidin A (eds) Tropical rainforests and agroforests under global change, Environmental Science and Engineering. Subseries Environmental Science. Springer, Berlin, pp 477–509

    Google Scholar 

  • Richter M (2003) Using plant functional types and soil temperatures for eco-climatic interpretation in southern Ecuador. Erdkunde 57:161–181

    Article  Google Scholar 

  • Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of Southern Ecuador. Landscape Online 12/2009

    Google Scholar 

  • Rollenbeck R (2010) Global sources – local impacts: natural and anthropogenic matter deposition in the Andes of Ecuador. Geoöko 1–2:1–25

    Google Scholar 

  • Rollenbeck R, Bendix J, Fabian P (2006) Spatial and temporal dynamics of atmospheric water- and nutrient inputs in tropical mountain forests of southern Ecuador. In: Bruijnzeel LA et al (eds) Mountains in the Mist: science for conserving and managing tropical montane cloud forests. University of Hawaii, Honolulu

    Google Scholar 

  • Sala OE, Chapin FS III, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Sarmiento FO, Frolich LM (2002) Andean cloud forest tree lines. Naturalness, agriculture and the human dimension. Mt Res Dev 22(3):278–287

    Article  Google Scholar 

  • Singh A (1989) Digital change detection techniques using remotely-sensed data. Int J Remote Sens 10:989–1003

    Article  Google Scholar 

  • Southgate D, Whitaker M (1992) Promoting resource degradation in Latin America: tropical deforestation, soil erosion, and coastal ecosystem disturbance in Ecuador. Econ Dev Cult Change 40:787–807

    Article  Google Scholar 

  • Southgate D, Whitaker M (1994) Economic progress and the environment: one developing country’s policy crisis. Oxford University Press, New York, p 150

    Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21th century. J Geophys Res 114, D02108

    Article  Google Scholar 

  • Williams JW, Jackson ST, Kutzbach JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci USA 104:5738–5742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Paul Ziegler and Erwin Beck for linguistic proofreading this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Peters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peters, T. et al. (2013). Environmental Changes Affecting the Andes of Ecuador. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_2

Download citation

Publish with us

Policies and ethics