Skip to main content

The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 221))

Abstract

Not much is known about the role of tropical mountain forests in the global carbon cycle. This chapter summarises a decade of research on C pools and C fluxes in Andean mountain forests of the San Francisco region along an elevation transect from 1,000 m to 3,000 m a.s.l. based on measurements in 5 (3) intensively studied stands at five elevations and supplementary data collected in additional 54 forest plots at three elevations covering different topographic positions at these altitudes. With ecosystem C pools in the range of 320–370 Mg C ha−1, these forests store equally large, or even larger, amounts of C than neotropical lowland forests, despite the decrease in aboveground biomass with elevation. Gross and net primary production (NPP) and net ecosystem production all decrease largely with elevation while fine root production seems to increase. Our results show that tropical mountain forests are playing an important, yet underestimated, role as C stores.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Batjes NH (2008) Mapping soil carbon stocks of Central Africa using SOTER. Geoderma 146:58–65

    Article  CAS  Google Scholar 

  • Batjes NH, Dijkshoorn JA (1999) Carbon and nitrogen stocks in the soil of the Amazon region. Geoderma 89:273–286

    Article  Google Scholar 

  • Bendix J, Rollenbeck R, Fabian P, Emck P (2008) Climate. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer Verlag, Berlin, pp 63–74

    Chapter  Google Scholar 

  • Benner J, Vitousek PM, Ostertag R (2010) Nutrient cycling and nutrient limitation in tropical montane cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 90–100

    Google Scholar 

  • Bruijnzeel LA, Kappelle M, Mulligan M, Scatena FN (2010) Tropical montane cloud forests: state of knowledge and sustainability perspectives in a changing world. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 691–740

    Google Scholar 

  • Cavaleri MA, Oberbauer SF, Ryan MG (2006) Wood CO2 efflux in a primary tropical rain forest. Glob Change Biol 12:2442–2458

    Article  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  PubMed  CAS  Google Scholar 

  • Chen G-S, Yang Y-S, Xie J-S, Guo J-F, Gao R, Qian W (2005) Conversion of a natural broad leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. Ann For Sci 62:659–668

    Article  CAS  Google Scholar 

  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR, Ni J (2001) Measuring net primary production in forests: concepts and field methods. Ecol Appl 11:356–370

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ, Wieder WR (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol Lett 14:939–947

    Article  PubMed  Google Scholar 

  • Davidson EA, de Araujo AC, Artaxo P, Balch JK, Brown IFC, Bustamante MM, Coe MT, DeFries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM, Wofsy SC (2012) The Amazon basin in transition. Nature 481:321–328

    Article  PubMed  CAS  Google Scholar 

  • De Moraes JF, Cerri CC, Melillo JM, Kicklighter D, Neill C, Skole DL, Steudler PA (1995) Soil carbon stocks of the Brazilian Amazon Basin. Soil Sci Soc Am J 59:244–247

    Article  CAS  Google Scholar 

  • Emck P (2007) A climatology of South Ecuador with special focus on the major Andean ridge as Atlantic-Pacific climate divide. PhD Thesis, University Erlangen, Germany

    Google Scholar 

  • Evans JR, Terashima I, Hanba Y, Loreto F (2004) Chloroplast to leaf. In: Smith WK, Vogelmann TC, Critchley C (eds) Photosynthetic adaptation. Chloroplast to landscape. Ecological studies 178. Springer, New York, pp 107–132

    Google Scholar 

  • Gentry AH (2001) Patrones de diversidad y composicion floristica en los bosques de las montanas neotropicales. In: Kappelle M, Brown AD (eds) Bosques nublados del neotropico. Editorial INBio, Santo Domingo de Heredia, Costa Rica, pp 85–123

    Google Scholar 

  • Gibbon A, Silman M, Malhi Y, Fisher J, Meir P, Zimmermann M, Dargie G, Farfan W, Garcia K (2010) Ecosystem carbon storage across the grassland–forest transition in the high Andes of Manu National Park, Peru. Ecosystems 13:1097–1111

    Article  CAS  Google Scholar 

  • Girardin CAJ, Malhi Y, Aragao LEOC, Mamani M, Huasco WH, Durand L, Feeley KJ, Rapp J, Silva-Espejo JE, Silman M, Salinas N, Whittaker RJ (2010) Net primary productivity allocation and cycling of carbon along a tropical forest elevational transect in the Peruvian Andes. Glob Change Biol 16:3176–3192

    Article  Google Scholar 

  • Grace J, Meir P (2009) Tropical rain forests as old-growth forests. In: Wirth C, Gleixner G, Heimann M (eds) Old-growth forests. Function, fate and value. Ecological studies, vol 207. Springer, Berlin, pp 391–408

    Google Scholar 

  • Grace J, Lloyd J, McIntyre J, Miranda A, Meir P, Miranda H, Moncrieff J, Massheder J, Wright I, Gash J (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. Glob Change Biol 1:1–12

    Article  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2008a) Estimating fine root turnover in tropical forests along an elevational transect using minirhizotrons. Biotropica 40:536–542

    Article  Google Scholar 

  • Graefe S, Hertel D, Leuschner C (2008b) Fine root dynamics along a 2000-m elevation transect in South Ecuadorian mountain forests. Plant Soil 313:155–166

    Article  CAS  Google Scholar 

  • Hertel D, Leuschner C (2002) A comparison of four different fine root production estimates with ecosystem carbon balance data in a Fagus-Quercus mixed forest. Plant Soil 239:237–251

    Article  CAS  Google Scholar 

  • Hertel D, Leuschner C (2010) Fine root mass and fine root production in tropical moist forests as dependent on soil, climate, and elevation. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 428–443

    Google Scholar 

  • Homeier J, Werner FA, Gradstein SR, Breckle S-W, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 87–100

    Google Scholar 

  • Iost S (2007) Soil respiration, microbial respiration and mineralisation in soils of montane rainforests of southern Ecuador: influence of altitude. PhD Thesis, Technical University of Dresden, Germany. 171 pp. Available at http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1201126765623-42870

  • Kitayama K, Aiba S-I (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Article  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8:219–230

    Article  Google Scholar 

  • Litherland M, Aspden J, Jemielita R (1994) The metamorphic belts of Ecuador. No. 11 in Overseas Memoir of the British Geological Survey. British Geology Survey, Keyworth

    Google Scholar 

  • Lü X-T, Tang J-W, Feng Z-L, Li M-H (2009) Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China. Rev Biol Trop 57(1–2):211–222

    PubMed  Google Scholar 

  • Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beers C, Bernhoffer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grunwald T, Guidolotti G, Hanson PJ, Harding R, Hollinger DY, Hutyra LR, Kolar P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Article  Google Scholar 

  • Malhi Y (2010) The carbon balance of tropical forest regions, 1990–2005. Curr Opin Environ Sustain 2:237–244

    Article  Google Scholar 

  • Malhi Y (2012) The productivity, metabolism and carbon cycle of tropical forest vegetation. J Ecol 100:65–75

    Article  CAS  Google Scholar 

  • Malhi Y, Baldocchi DD, Jarvis PG (1999) The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ 22:715–740

    Article  CAS  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Di Fiore A, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LMM, Monteagudo A, Neill DA, Nunez VP, Patino S, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Torres LA, Vasquez MR, Terborgh J, Vinceti B, Lloyd J (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591

    Article  Google Scholar 

  • Malhi Y, Wood D, Baker TR, Wright J, Phillips OL, Cochrane T, Meir P, Chave J, Almeida S, Arroyo L, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Monteagudo A, Neill DA, Vargas PN, Pitman NCA, Quesada CA, Salomao R, Silva JNM, Lezama AT, Terborgh J, Martinez RV, Vinceti B (2006) The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob Change Biol 12:1107–1138

    Article  Google Scholar 

  • Malhi Y, Silman M, Salinas N, Bush M, Meir P, Saatchi S (2010) Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Glob Change Biol 16:3171–3175

    Article  Google Scholar 

  • McJannet DL, Wallace JS, Reddell P (2010) Comparative water budgets of a lower and an upper montane cloud forest in the Wet Tropics of northern Australia. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 479–490

    Google Scholar 

  • Mercado L, Lloyd J, Carswell F, Malhi Y, Meir P, Nobre AD (2006) Modelling Amazonian forest eddy covariance data: a comparison of big leaf versus sun/shade models for the C-14 tower at Manaus. I. Canopy photosynthesis. Acta Amazon 36:69–82

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root:shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Moser G, Hertel D, Leuschner C (2007) Altitudinal change of leaf area and leaf mass in tropical mountain forests – a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:24–935

    Article  Google Scholar 

  • Moser G, Röderstein M, Soethe N, Hertel D, Leuschner C (2008) Altitudinal changes in stand structure and biomass allocation of tropical mountain forests in relation to microclimate and soil chemistry. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Ecological studies, vol 198. Springer, Berlin, pp 229–242

    Google Scholar 

  • Moser G, Leuschner C, Röderstein M, Graefe S, Soethe N, Hertel D (2010) Biomass and productivity of fine and coarse roots in five tropical mountain forests stands along an altitudinal transect in southern Ecuador. Plant Ecol Divers 3:151–164

    Article  Google Scholar 

  • Moser G, Leuschner C, Hertel D, Graefe S, Soethe N, Iost S (2011) Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Glob Change Biol 17:2211–2226

    Article  Google Scholar 

  • Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87

    Article  PubMed  Google Scholar 

  • Robertson AL, Malhi Y, Farfan-Amezquita F, Aragao LEOC, Espejo JES, Robertson MA (2010) Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Glob Change Biol 16:3193–3204

    Article  Google Scholar 

  • Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP, Running SW (1995) Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia 101:133–140

    Article  Google Scholar 

  • Schnitzer SA, DeWalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38(5):581–591

    Article  Google Scholar 

  • Sierra CA, del Valle JI, Orrego SA, Moreno FH, Harmon ME, Zapata M, Colorado GJ, Herrera MA, Lara W, Restrepo DE, Berrouet LM, Loaiza LM, Benjumea JF (2007) Total carbon stocks in a tropical forest landscape of the Porce region, Colombia. For Ecol Manage 243:299–306

    Article  Google Scholar 

  • Slik JWF, Aiba S-I, Brearley FQ, Cannon CH, Forshed O, Kitayama K, Nagamasu H, Nilus R, Payne J, Paoli G, Poulsen AD, Raes N, Sheil D, Sidiyasa K, Suzuki E, van Valkenburg JLCH (2010) Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob Ecol Biogeogr 19:50–60

    Article  Google Scholar 

  • Soethe N, Lehmann J, Engels C (2007) Carbon and nutrient stocks in roots of forests at different altitudes in the Ecuadorian Andes. J Trop Ecol 23:319–328

    Article  Google Scholar 

  • Strauss-Debenedetti S, Bazzaz F (1996) Photosynthetic characteristics of tropical trees along successional gradients. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapmann & Hall, New York, pp 162–186

    Chapter  Google Scholar 

  • Townsend AR, Cleveland CC, Cory C et al (2011) Multi-element regulation of the tropical forest carbon cycle. Front Ecol Environ 9:9–17

    Article  Google Scholar 

  • Unger M, Homeier J, Leuschner C (2013) Relationships among leaf area index, below-canopy light availability and tree diversity along a transect from tropical lowland to montane forests in NE Ecuador. Trop Ecol 54(1):33–45

    Google Scholar 

  • Veneklaas EJ, Poorter L (1998) Growth and carbon partitioning of tropical tree seedlings in contrasting light environments. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth. Physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 337–361

    Google Scholar 

  • Vieira SA, Alves LF, Duarte-Neto PJ, Martins SC, Veiga LG, Scaranello MA, Picollo M, Camargo PB, do Carmo JB, Sousa Neto E, Santos FAM, Joly CA, Martinelli LA (2011) Stocks of carbon and nitrogen and partitioning between above- and belowground pools in the Brazilian coastal Atlantic Forest elevation range. Ecol Evol 1:421–434

    Article  PubMed  Google Scholar 

  • Werner FA, Homeier J, Oesker M, Boy J (2012) Epiphytic biomass of a tropical Andean forest varies with topography. J Trop Ecol 28:23–31

    Article  Google Scholar 

  • Wilcke W, Hess T, Bengel C, Homeier J, Valarezo C, Zech W (2005) Coarse woody debris in a montane forest in Ecuador: mass, C and nutrient stock, and turnover. For Ecol Manage 205:139–147

    Article  Google Scholar 

  • Wittich B, Horna V, Homeier J, Leuschner C (2012) Altitudinal change in the photosynthetic capacity of tropical trees: a case study from Ecuador and a pantropical literature analysis. Ecosystems 15:958–973

    Article  CAS  Google Scholar 

  • Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biogeochem Cycles 25, GB4009

    Google Scholar 

  • Yonekura Y, Ohta S, Kiyono Y, Ahsa D, Morisada K, Tanaka N, Kanzaki M (2010) Changes in soil carbon stocks after deforestation and subsequent establishment of “Imperata” grassland in the Asian humid tropics. Plant Soil 329:495–507

    Article  CAS  Google Scholar 

  • Zach A (2008) Carbon release from woody parts of trees along an elevation gradient in a tropical montane moist forest of southern Ecuador. PhD Thesis, University of Göttingen, Germany. 135 pp. Available at http://webdoc.sub.gwdg.de/diss/2008/zach/

  • Zach A, Horna V, Leuschner C (2008) Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador. Tree Physiol 28:67–74

    Article  PubMed  CAS  Google Scholar 

  • Zach A, Horna V, Leuschner C (2010) Patterns of wood carbon dioxide efflux across a 2000-m elevation transect in an Andean moist forest. Oecologia 162:127–137

    Article  PubMed  Google Scholar 

  • Zimmermann M, Meir P, Silman MR, Fedders A, Gibbon A, Malhi Y, Urrego DH, Bush MB, Feeley KJ, Garcia KC, Dargie GC, Farfan WR, Goetz BP, Johnson WT, Kline KM, Modi AT, Rurau NMQ, Staudt BT, Zamora F (2010) No differences in soil carbon stocks across the tree line in the Peruvian Andes. Ecosystems 13:62–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Leuschner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leuschner, C. et al. (2013). The Carbon Balance of Tropical Mountain Forests Along an Altitudinal Transect. In: Bendix, J., et al. Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador. Ecological Studies, vol 221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38137-9_10

Download citation

Publish with us

Policies and ethics