Skip to main content

Homeostatic Control and the Smart Grid: Applying Lessons from Biology

  • Chapter
  • First Online:
Optimization and Security Challenges in Smart Power Grids

Part of the book series: Energy Systems ((ENERGY))

Abstract

Electric power grids in this country and abroad are undergoing revolutionary changes through the increased integration of electric power generation, delivery and consumption with computation, communications, and cyber security. Emerging out of these activities is a smart grid that includes new technologies ranging from microgrids capable of islanded operation to wind power generation and electric vehicle supply. The success of this massive endeavor will depend on large measure on the development of control methodologies that maintain homeostasis in the face of natural stresses, malfunctions and deliberate attacks. The goal of this chapter is to sketch out possible control strategies for the future smart grid based upon insights into how living systems deal with these same issues. This is a broad topic and the particular focus here will be on presenting a simple model of control by neural and innate immune systems that could be applied to operational security at substations and microgrids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert R, Albert I and Nakarado GL (2004) Structural vulnerability of the North American power grid. Phys Rev E 69:025103(R). doi:10.1103/PhysRevE.69.025103

  • Beckerman M (2005) Molecular and cellular signaling. Springer, New York

    Google Scholar 

  • Beckerman M (2009) Cellular signaling in health and disease. Springer, New York

    Book  Google Scholar 

  • Blalock JE (1989) A molecular-basis for bidirectional communication between the immune and neuro-endocrine systems. Physiol Rev 69:1–32

    Google Scholar 

  • Buse DP, Sun P, Wu QH, Fitch J (2003) Agent-based substation automation. IEEE Power Energy Mag 50–55. doi:10.1109/MPAE.2003.1192026

  • Carreras BA, Newman DE, Dobson I, Poole AB (2004) Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans Circuits Syst I 51:1733–1740. doi:10.1109/TCSI.2004.834513

    Article  Google Scholar 

  • Chen GY, Nuñez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837. doi:10.1038/nri2873

    Article  Google Scholar 

  • Davidson EM, McArthur SDJ, McDonald JR, Cumming T, Watt I (2006) Applying multi-agent system technology in practice: automated management and analysis of SCADA and digital fault recorder data. IEEE Trans Power Syst 21:559–567. doi:10.1109/TPWRS.2006.873109

    Article  Google Scholar 

  • Dimeas AL, Hatziargyriou ND (2005) Operation of a multiagent system for microgrid control. IEEE Trans Power Syst 20:1447–1455. doi:10.1109/TPWRS.2005.852060

    Article  Google Scholar 

  • Dobson I, Carreras BJ, Lynch VE, Newman DE (2007) Complex systems analysis of series of blackouts: Cascading failure, critical points and self-organization. Chaos 17(026103):1–13. doi:10.1063/1.2737822

    Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Nat Acad Sci USA 98:13763–13768. doi:10.1073/pnas.231499798

    Article  Google Scholar 

  • Ericsson GN (2010) Cyber security and power system communication—essential parts of a smart grid infrastructure. IEEE Trans Power Delivery 25:1501–1507. doi:10.1109/TPWRD.2010.2046654

    Article  Google Scholar 

  • Graham-Brown T (1911) The intrinsic factors in the act of progression in the mammal. Proc R Soc Lond B 84:308–319

    Article  Google Scholar 

  • IEEE Trans Power Syst (2004) Definition and classification of power system stability. 19:1387–1401. doi:10.1109/TPWRS.2004.825981

  • Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots. Neural Networks 21:642–653. doi:10.1016/j.neunet.2008.03.014

    Article  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symp Quant Biol 54:1–13

    Article  Google Scholar 

  • Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44:35–41. doi:10.1145/367211.367250

    Article  Google Scholar 

  • Jimeno J, Anduaga J, Oyarzabal J, de Muro AG (2011) Architecture of a microgrid energy management system. European Trans Electrical Power 21:1142–1158. doi:0.1002/etep.443

    Article  Google Scholar 

  • Li H, Rosenwald GW, Jung J, Liu C (2005) Strategic power infrastructure defense. Proc IEEE 93:918–933. doi:10.1109/JPROC.2005.847260

    Article  Google Scholar 

  • Liu Y, Ning P, Reiter MK (2011) False data injection attacks against state estimation in electric power grids. ACM Trans Info Syst Sec (TISSEC) 14:Art 13. doi:10.1145/1952982.1952995

  • Lopes JAP, Moreira CL, Madureira AG (2006) Defining control strategies for microgrids islanded operations. IEEE Trans Power Syst 21:916–924. doi:10.1109/TPWRS.2006.873018

    Article  Google Scholar 

  • Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574. doi:10.1038/nrn1949

    Article  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-\(\beta \). Mol Cell 10:417–426. doi:10.1016/S1097-2765(02)0059-3

    Google Scholar 

  • Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045. doi:10.1146/annurev.iy.12.040194.005015

    Article  Google Scholar 

  • McArthur SDJ, Davidson EM, Catterson VM, Dimeas AL, Hatziargyriou ND, Ponci F, Funabashi T (2007a) Multi-agent systems for power engineering applications—Part 1: concepts, approaches, and technical challenges. IEEE Trans Power Systems 22:1743–1752. doi:10.1109/TPWRS.2007.908471

  • McArthur SDJ, Davidson EM, Catterson VM, Dimeas AL, Hatziargyriou ND, Ponci F, Funabashi T (2007b) Multi-agent systems for power engineering applications—Part 2: technologies, standards, and tools for building multi-agent systems. IEEE Trans Power Systems 22:1753–1759. doi:10.1109/TPWRS.2007.908472

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. doi:10.1038/nri2448

    Article  Google Scholar 

  • Nagata T, Sasaki H (2002) A multi-agent approach to power system restoration. IEEE Trans Power Syst 17:457–462. doi:TPWRS.2002.1007918

    Article  Google Scholar 

  • Oyarzabal J, Jimeno J, Ruela J, Engler A and Hardt C (2005) Agent based microgrid management system. In: IEEE conference future power system, pp. 6–11. doi:10.1109/FPS.2005.204230

  • Pipattanasomporn M, Feroze H and Rahman S (2009) Multi-agent systems in a distributed smart grid: Design and implementation. In: Proceedings of IEEE PES power system conference and exposition (PSCE’09), pp. 1–8. doi:10.1109/PSCE.2009.4840087

  • Prinz AA, Bucher D, Marder E (2004) Similar network properties from disparate circuit parameters. Nat Neurosci 7:1345–1352. doi:10.1038/nn1352

    Article  Google Scholar 

  • Sachtjen ML, Carreras BA, Lynch VE (2000) Disturbances in a power transmission system. Phys Rev E 61:4877–4882. doi:10.1103/PhysRevE.61.4877

    Article  Google Scholar 

  • Schweppe FC, Tabors RD, Kirtley JL, Outhred HR, Pickel FH and Cox AJ (1980) Homeostatic utility control. IEEE Trans Power Apparatus Syst PAS-99:1151–1163. doi:10.1109/TPAS.1980.319745

    Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328. doi:10.1038/nri1810

    Article  Google Scholar 

  • Sun JR, Singh V, Kajino-Sakamoto R, Aballay A (2011) Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 332:729–732. doi:10.1126/Science.1203411

    Article  Google Scholar 

  • Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859. doi:10.1038/nature01321

    Article  Google Scholar 

  • Wang HF, Li H, Chen H (2003) Coordinated secondary voltage control to eliminate voltage violations in power system contingencies. IEEE Trans Power Syst 18:588–595. doi:10.1109/TPWRS.2003.810896

    Article  Google Scholar 

  • Wang H, Yu M, Ochani M, Amella CA, Tanovic M et al (2003) Nicotine acetylcholine receptor \(\alpha \)7 subunit is an essential regulator of inflammation. Nature 421:384–388. doi:10.1038/nature01339

    Google Scholar 

  • Wei D, Lu Y, Jafari M, Skare PM, Rohde K (2011) Protecting smart grid automation systems against cyberattacks. IEEE Trans Smart Grid 2:782–795. doi:10.1109/TSG.2011.2159999

    Article  Google Scholar 

  • Wooldridge M (1997) Agent-based software engineering. IEE Proc Softw Eng 144:26–37. doi:10.1049/ip-sen:19971026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Beckerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beckerman, M. (2013). Homeostatic Control and the Smart Grid: Applying Lessons from Biology. In: Pappu, V., Carvalho, M., Pardalos, P. (eds) Optimization and Security Challenges in Smart Power Grids. Energy Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38134-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38134-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38133-1

  • Online ISBN: 978-3-642-38134-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics