Skip to main content

Quantitative Structure–Activity Relationship Studies on Hydroxamic Acids Acting as Histone Deacetylase Inhibitors

  • Chapter
  • First Online:
Hydroxamic Acids

Abstract

Hydroxamic acids have been found to react with both proteins and nucleic acids attracting increasing attention for their potential as highly efficacious in combating various biological targets, free radicals, and biological disorders among them cancer and inflammation. The reactivity of hydroxamic acids toward sulfhydryl groups and metal ions of proteins has been suggested to be the reason for their inhibitory effect on various enzymes. The ability of the hydroxamic acid functionality to form chelates with metals in the enzyme’s active site is considered to be an important functional feature for a metalloenzyme inhibition. Many approaches in developing hydroxamic drugs, such as trichostatin and vorinostat, that interfere with (metallo) enzymes and act as anticancer drugs have been pursued over the past few decades. We present here a brief review of the QSAR and molecular modeling studies performed on hydroxamic acid derivatives acting as histone deacetylase inhibitors that have been studied as anticancer agents. These studies have shown that the anticancer activity of these compounds is basically controlled by their hydrophobic and steric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACxDN:

Index of cohesive interactions in solids

B1 :

Sterimol parameter of Verloop for the smallest width of substituent

BMLR:

Best multilinear regression method

Clog P :

Overall calculated lipophilicity

CMR:

Molar refractivity of the whole molecule

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity indices analysis

DPL:

Dipole

ES-SWR:

Elimination selection-stepwise regression method

FISA:

Hydrophilic component of the solvent-accessible surface area

GFA:

Genetic function approximation

Glob:

Globularity of the compounds

HAT:

Histone acetyl-transferase

HDAC:

Histone deacetylase

HOMO:

Highest occupied molecular orbital

L:

Verloop parameter for the length of the first atom of the substituent

LFER:

Linear free energy related

LSSVM:

Least squares support vector machine

MgVol:

MacGovan volume

MLR:

Multiple linear regression

MMPs:

Matrix metalloproteinases

MR–R :

Molar refractivity of the substituent

MSA:

Molecular shape analysis

MW:

Molecular weight

PCA:

Principal component analysis

PLS:

Partial least squares

PMIX:

Principal moment of inertia along X-axis

QSAR:

Quantitative structure-activity relationships

QTMS:

Quantum topological molecular similarity

r:

Radius

SAR:

Structure-activity relationships

SASA:

Solvent-accessible surface area

ShpC:

Shape coefficient

TopoJ:

Balaban topological index

TSAR:

Tool for structure-activity relationships

WLS:

Weighted least square

WPSA:

Weak polar component of the solvent-accessible surface area

References

  • Angibaud P, Arts J, Van Emelen K et al (2005) Discovery of pyrimidyl-5-hydroxamic acids as new potent histone deacetylase inhibitors. Eur J Med Chem 40:597–606

    Article  CAS  Google Scholar 

  • Belvedere S, Witter DJ, Yan J et al (2007) Aminosuberoyl hydroxamic acids (ASHAs): a potent new class of HDAC inhibitors. Bioorg Med Chem Let 17:3969–3971

    Article  CAS  Google Scholar 

  • Bieliauskas AV, Weerasinghe SVW, Pflum MKH (2007) Structural requirements of HDAC inhibitors: SAHA analogs functionalized adjacent to the hydroxamic acid. Bioorg Med Chem Let 17:2216–2219

    Article  CAS  Google Scholar 

  • Bouchain G, Leit S, Frechette S et al (2003) Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J Med Chem 46:820–830

    Article  CAS  Google Scholar 

  • Charrier C, Bertrand P, Gesson JP et al (2006) Synthesis of rigid trichostatin A analogs as HDAC inhibitors. Bioorg Med Chem Lett 16:5339–5344

    Article  CAS  Google Scholar 

  • Chen Y, Jiang YJ, Zhou JW et al (2008a) Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. J Mol Graph Model 26:1160–1168

    Article  CAS  Google Scholar 

  • Chen Y, Li H, Tang W et al (2009) 3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment. Eur J Med Chem 44:2868–2876

    Article  CAS  Google Scholar 

  • Chen Y, Lopez-Sanchez M, Savoy DN et al (2008b) A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J Med Chem 51:3437–3448

    Article  CAS  Google Scholar 

  • Curtin ML, Garland RB, Heyman HR et al (2002) Succinimide hydroxamic acids as potent inhibitors of histone deacetylase (HDAC). Bioorg Med Chem Lett 12:2919–2923

    Article  CAS  Google Scholar 

  • Dai Y, Guo Y, Guo J et al (2003) Indole amide hydroxamic acids as potent inhibitors of histone deacetylases. Bioorg Med Chem Lett 13:1897–1901

    Article  CAS  Google Scholar 

  • Dawson M, Xia Z, Liu G et al (2007) An adamantyl-substituted retinoid-derived molecule that inhibits cancer cell growth and angiogenesis by inducing apoptosis and binds to small heterodimer partner nuclear receptor: effects of modifying its carboxylate group on apoptosis, proliferation, and protein-tyrosine phosphatase activity. J Med Chem 50:2622–2639

    Article  CAS  Google Scholar 

  • Delorme D, Ruel R, Lavoie R et al (2001) Inhibitors of histone deacetylase, methylgene, Inc Int Patent Appl WO 01/38322

    Google Scholar 

  • Dessalew N (2007) QSAR study on aminophenylbenzamides and acrylamides as histone deacetylase inhibitors: an insight into the structural basis of antiproliferative activity. Med Chem Res 16:449–460

    Article  CAS  Google Scholar 

  • Domingo JL (1998) Developmental toxicity of metal chelating agents. Reprod Toxicol 12:499–510

    Article  CAS  Google Scholar 

  • El Yazal J, Pang YP (2000) Proton dissociation energies of zinc-coordinated hydroxamic acids and their relative affinities for zinc: insight into design of inhibitors of zinc-containing proteinases. J Phys Chem B 104:6499–6504

    Article  Google Scholar 

  • Green ES, Evans H, Rice-Evans P et al (1993) The efficacy of monohydroxamates as free radical scavenging agents compared with di- and trihydroxamates. Biochem Pharmacol 45:357–366

    Article  CAS  Google Scholar 

  • Guo Y, Xiao J, Guo Z et al (2005) Exploration of a binding mode of indole amide analogues as potent histone deacetylase inhibitors and 3D-QSAR analyses. Bioorg Med Chem Let 13:5424–5434

    Article  CAS  Google Scholar 

  • Gupta SP (2011) QSAR and molecular modeling. Anamaya, New Delhi

    Google Scholar 

  • Jaiswal D, Karthikeyan C, Shrivastava SK et al (2006) QSAR modeling of sulfonamide inhibitors of histone deacetylase. Int Electr J Mol Des 5:345–354

    CAS  Google Scholar 

  • Jung M, Brosch G, Kolle D et al (1999) Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 42:4669–4679

    Article  CAS  Google Scholar 

  • Juvale DC, Kulkarni VV, Deokar HH et al (2006) 3D-QSAR of histone deacetylase inhibitors: hydroxamate analogues. Org Biomol Chem 4:2858–2868

    Article  CAS  Google Scholar 

  • Katritzky AR, Slavov SH, Dobchev DA et al (2007) Comparison between 2D and 3D-QSAR approaches to correlate inhibitor activity for a series of indole amide hydroxamic acids. QSAR Comb Sci 3:333–345

    Article  Google Scholar 

  • Kim DK, Lee JY, Kim JS et al (2003) Synthesis and biological evaluation of 3-(4-substituted-phenyl)-N-hydroxy-2-propenamides, a new class of histone deacetylase inhibitors. J Med Chem 46:5745–5751

    Article  CAS  Google Scholar 

  • Kim HM, Ryu DK, Choi Y et al (2007) Structure-activity relationship studies of a series of novel delta-lactam-based histone deacetylase inhibitors. J Med Chem 50:2737–2741

    Article  CAS  Google Scholar 

  • Kozikowski AP, Chen Y, Gaysin AM et al (2008) Chemistry, biology, and QSAR studies of substituted biaryl hydroxamates and mercaptoacetamides as HDAC inhibitors-nanomolar-potency inhibitors of pancreatic cancer cell growth. Chem Med Chem 3:487–501

    CAS  Google Scholar 

  • Lavoie R, Bouchain G, Frechette S et al (2001) Design and synthesis of a novel class of histone deacetylase inhibitors. Bioorg Med Chem Lett 11:2847–2850

    Article  CAS  Google Scholar 

  • Lipczynska-Kochany E (1988) In: Some new aspects of hydroxamic acid chemistry. E. Pr Nauk Politech Warsz Chem 46:3–98

    Google Scholar 

  • Liu B, Lu AJ, Liao CZ et al (2005) 3D-QSAR of sulfonamide hydroxamic acid HDAC inhibitors. Acta Phys Chim Sin 21:333–337

    Google Scholar 

  • Lu Q, Wang DS, Chen CS et al (2005) Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem 48:5530–5535

    Article  CAS  Google Scholar 

  • Mahboobi S, Sellmer A, Höcher H et al (2007) 2-aroylindoles and 2-aroylbenzofurans with N-hydroxyacrylamide substructures as a novel series of rationally designed histone deacetylase inhibitors. J Med Chem 50:4405–4418

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Cerbara I et al (2004) 3-(4-Aroyl-1-methyl-1H-2-pyrrolyl)- N-hydroxy-2-propenamides as a new class of synthetic histone deacetylase inhibitors. 2. Effect of pyrrole-C2 and/or -C4 substitutions on biological activity. J Med Chem 47:1098–1109

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Pezzi R et al (2003a) Discovery of (aryloxopropenyl)pyrrolyl hydroxyamides as selective inhibitors of class IIa histone deacetylase homologue HD1-A. J Med Chem 46:4826–4829

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Pezzi R et al (2005a) Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Chem 48:3344–3353

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Ragno R et al (2002) Binding mode analysis of 3-(4-benzoyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide: a new synthetic histone deacetylase inhibitor inducing histone hyperacetylation, growth inhibition, and terminal cell differentiation. J Med Chem 45:1778–1784

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Ragno R et al (2003b) 3-(4 Aroyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-alkylamides as a new class of synthetic histone deacetylase inhibitors. 1. Design, synthesis, biological evaluation, and binding mode studies performed through three different docking procedures. J Med Chem 46:512–524

    Article  CAS  Google Scholar 

  • Mai A, Massa S, Rotili D et al (2005b) Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg Med Chem Lett 15:4656–4561

    Article  CAS  Google Scholar 

  • Massa S, Mai A, Sbardella G et al (2001) 3-(4-aroyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamides, a new class of synthetic histone deacetylase inhibitors. J Med Chem 44:2069–2072

    Article  CAS  Google Scholar 

  • Melagraki G, Afantitis A, Sarimveis H et al (2009) Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors. Mol Divers 13:301–311

    Article  CAS  Google Scholar 

  • Moradei O, Leit S, Zhou N et al (2006) Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: novel classes of histone deacetylase inhibitors. Bioorg Med Chem Lett 16:4048–4052

    Article  CAS  Google Scholar 

  • Munster PN, Troso-Sandoval T, Rosen N et al (2001) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces differentiation of human breast cancer cells. Cancer Res 61:8492–8497

    CAS  Google Scholar 

  • Muri EMF, Nieto MJ, Sindelar RD et al (2002) Hydroxamic acids as pharmacological agents. Cur Med Chem 9:1631–1653

    Article  CAS  Google Scholar 

  • Nagaoka Y, Maeda T, Kawai Y et al (2006) Synthesis and cancer antiproliferative activity of new histone deacetylase inhibitors: hydrophilic hydroxamates and 2-aminobenzamide containing derivatives. Eur J Med Chem 41:697–708

    Article  CAS  Google Scholar 

  • Niemeyer HM, Pesel E, Copaja SV et al (1989) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochem 28:447–449

    Article  CAS  Google Scholar 

  • Park H, Lee S (2004) Homology modeling, force field design, and free energy simulation studies to optimize the activities of histone deacetylase inhibitors. J Comp-Aid Mol Des 18:375–388

    Article  CAS  Google Scholar 

  • Parvathy S, Hussain I, Karran EH et al (1998) Alzheimer’s amyloid precursor protein alpha-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochem 37:1680–1685

    Article  CAS  Google Scholar 

  • Pontiki E, Hadjipavlou- Litina D, Geromichalos G et al (2009) Anticancer activity and quantitative–structure activity relationship (QSAR) studies of a series of antioxidant/anti-inflammatory aryl-Acetic and hydroxamic Acids. Chem Biol Drug Des 74:266–275

    Article  CAS  Google Scholar 

  • Pontiki E, Hadjipavlou-Litina D (2012) Histone deacetylase inhibitors (HDACIs). Structure-activity relationships: history and new QSAR perspectives. Med Res Rev 32:1–165

    Article  CAS  Google Scholar 

  • Price S, Bordogma W, Braganza R et al (2007a) Identification and optimisation of a series of substituted 5-pyridin-2-yl-thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 17:363–369

    Article  CAS  Google Scholar 

  • Price S, Bordogna W, Bull RJ et al (2007b) Identification and optimisation of a series of substituted 5-(1H-pyrazol-3-yl) thiophene-2-hydroxamic acids as potent histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 17:370–375

    Article  CAS  Google Scholar 

  • Ragno R, Simeoni S, Rotili D et al (2008) Class II-selective histone deacetylase inhibitors. Part 2: alignment-independent GRIND 3-D QSAR, homology and docking studies. Eur J Med Chem 43:621–632

    Article  CAS  Google Scholar 

  • Ragno R, Simeoni S, Valente S et al (2006) 3-D QSAR studies on histone deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds. J Chem Inf Model 46:1420–1430

    Article  CAS  Google Scholar 

  • Rajwade RP, Pande R, Mishra KP et al (2009) Hydroxamic acids analogous against breast cancer cells: 2D-QSAR and 3D-QSAR studies. QSAR Comb Sci 28:1500–1508

    Article  CAS  Google Scholar 

  • Rajwade RP, Pande R, Mishra KP et al (2008) Quantitative structure—activity relationship (QSAR) of N-arylsubstituted hydroxamic acids as inhibitors of human adenocarinoma cells A431. Med Chem 4:237–243

    Article  CAS  Google Scholar 

  • Remiszewski SW, Sambucetti LC, Atadja P et al (2002) Inhibitors of human histone deacetylase: synthesis and enzyme and cellular activity of straight chain hydroxamates. J Med Chem 45:753–757

    Article  CAS  Google Scholar 

  • Remiszewski SW, Sambucetti LC, Bair KW et al (2003) N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl) [2-(1H-indol-3-yl) ethyl] amino] methyl]phenyl]-2 propenamide (NVP-LAQ824). J Med Chem 46:4609–4624

    Article  CAS  Google Scholar 

  • Shinji C, Maeda S, Imai K et al (2006) Design, synthesis, and evaluation of cyclic amide/imide-bearing hydroxamic acid derivatives as class-selective histone deacetylase (HDAC) inhibitors. Bioorg Med Chem 14:7625–7651

    Article  CAS  Google Scholar 

  • Shinji C, Nakamura T, Maeda S et al (2005) Design and synthesis of phthalimide-type histone deacetylase inhibitors. Bioorg Med Chem Lett 15:4427–4431

    Article  CAS  Google Scholar 

  • Siverman RB (2004) The organic chemistry of drug design and drug action. Academic Press, USA

    Google Scholar 

  • Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Invest Drugs 9:2913–2922

    Article  CAS  Google Scholar 

  • Taira J, Chika M, Aniya Y (2002) Dimerumic acid as an antioxidant from the mold, Monascus anka: the inhibition mechanisms against lipid peroxidation and hemeprotein-mediated oxidation. Biochem Pharmacol 63:1019–1026

    Article  CAS  Google Scholar 

  • Turcot I, Stintzi A, Xu J et al (2000) Fast biological iron chelators: kinetics of iron removal from human differic transferring by multidentate hydroxypyridonates. Biol Inorg Chem 5:634–641

    Article  CAS  Google Scholar 

  • Vadivelan S, Sinha BN, Rambabu G et al (2008) Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads. J Mol Graph Model 26:935–946

    Article  CAS  Google Scholar 

  • Wagh NK, Deokar HS, Juvale DC et al (2006) 3D-QSAR of histone deacetylase inhibitors as anticancer agents by genetic function approximation. Ind J Biochem Biophys 43:360–371

    CAS  Google Scholar 

  • Wang DF, Wiest O, Helquist P et al (2004) QSAR studies of PC-3 cell line inhibition activity of TSA and SAHA-like hydroxamic acids. Bioorg Med Chem Let 14:707–711

    Article  CAS  Google Scholar 

  • Wittich S, Scherf H, Xie C et al (2002) Structure-activity relationships on phenylalanine-containing inhibitors of histone deacetylase: in vitro enzyme inhibition, induction of differentiation, and inhibition of proliferation in Friend leukemic cells. J Med Chem 45:3296–3309

    Article  CAS  Google Scholar 

  • Woo SH, Frechette S, Abou Khalil E et al (2002) Structurally simple trichostatin A-like straight chain hydroxamates as potent histone deacetylase inhibitors. J Med Chem 45:2877–2885

    Article  CAS  Google Scholar 

  • Xie A, Liao C, Li Z et al (2004) Quantitative structure-activity relationship study of histone deacetylase inhibitors. Curr Med Chem Anticancer Agents 4:273–299

    Article  CAS  Google Scholar 

  • Zhang L, Fang H, Zhu HW et al (2009) QSAR studies of histone deacetylase (HDAC) inhibitors by CoMFA, CoMSIA, and molecular docking. Drug Discov Ther 3:41–48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitra Hadjipavlou-Litina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadjipavlou-Litina, D., Pontiki, E. (2013). Quantitative Structure–Activity Relationship Studies on Hydroxamic Acids Acting as Histone Deacetylase Inhibitors. In: Gupta, S. (eds) Hydroxamic Acids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38111-9_8

Download citation

Publish with us

Policies and ethics