Skip to main content

Hydroxamic Acid Derivatives as Potential Anticancer Agents

  • Chapter
  • First Online:
Hydroxamic Acids

Abstract

Hydroxamic acid containing organic molecules display strong metal ion chelating property, and therefore used as metalloenzyme inhibitors. They display strong affinity toward histone deacetylase, matrix metalloproteinases, human epidermal growth factor receptor-2, and tumor necrosis factor alpha converting enzyme. These enzymes play crucial roles in the pathogenesis of cancer and are attractive targets for the development of new anticancer agents. Various molecules bearing free hydroxamic acid at one terminal have been synthesized and evaluated for their activities. This article will focus on the development of various classes of hydroxamic acid-based metalloenzyme inhibitors and anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and metalloproteinase

ALCAM:

Activated leukocyte cell adhesion molecule

CA:

Carbonic anhydrase

ECD:

Extracellular domain

EGFR/HER2:

Human epidermal growth factor receptor-2

HA:

Hydroxamic acid

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

IMPDH:

Inosine-5′-monophosphate dehydrogenase

MCG:

Metal chelating group

MMP:

Matrix metalloproteinase

MPA:

Mycophenolic acid

MSS:

Musculoskeletal syndrome

MTX:

Methotrexate

NAHA:

N-alkylated amino acid-derived hydroxamate

NSCLC:

Non small cell lung cancer

RAMBA:

Retinoic acid metabolism blocking agent

SAHA:

Suberoyl anilide hydroxamic acid

TACE:

Tumor necrosis factor alpha converting enzyme

TNF-α:

Tumor necrosis factor alpha

TSA:

Trichostatin A

WBA:

White blood assay

References

  • Alonso-Ruiz A, Pijoan JI, Ansuategui E, Urkaregi A, Calabozo M, Quintana A (2008) Tumor necrosis factor alpha drugs in rheumatoid arthritis: systematic review and metaanalysis of efficacy and safety. BMC Musculoskelet Disord 9:52

    Article  Google Scholar 

  • Angibaud P, Van Emelen K, Decrane L, van Brandt S, Ten Holte P, Pilatte I, Roux B et al (2010) Identification of a series of substituted 2-piperazinyl-5-pyrimidylhydroxamic acids as potent histone deacetylase inhibitors. Bioorg Med Chem Lett 20:294–298

    Article  CAS  Google Scholar 

  • Arribas J, Borroto A (2002) Protein ectodomain shedding. Chem Rev 102:4627–4638

    Article  CAS  Google Scholar 

  • Atadja P, Gao L, Kwon P, Trogani N, Walker H, Hsu M, Yeleswarapu L, Chandramouli N, Perez L, Versace R, Wu A, Sambucetti L, Lassota P, Cohen D, Bair K, Wood A, Remiszewski S (2004) Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 64:689–695

    Article  CAS  Google Scholar 

  • Barlaam B, Bird TG, Lambert-Van Der Brempt C, Campbell D, Foster SJ, Maciewicz R (1999) New alpha-substituted succinate-based hydroxamic acids as TNFalpha convertase inhibitors. J Med Chem 42:4890–4908

    Google Scholar 

  • Becker DP, Villamil CI, Barta TE, Bedell LJ, Boehm TL, Decrescenzo GA, Freskos JN, Getman DP, Hockerman S, Heintz R, Howard SC, Li MH, McDonald JJ, Carron CP, Funckes-Shippy CL, Mehta PP, Munie GE, Swearingen CA (2005) Synthesis and structure-activity relationships of beta- and alpha-piperidine sulfone hydroxamic acid matrix metalloproteinase inhibitors with oral antitumor efficacy. J Med Chem 48:6713–6730

    Article  CAS  Google Scholar 

  • Bissett D, O’Byrne KJ, von Pawel J, Gatzemeier U, Price A, Nicolson M, Mercier R, Mazabel E, Penning C, Zhang MH, Collier MA, Shepherd FA (2005) Phase III study of matrix metalloproteinase inhibitor prinomastat in non-small-cell lung cancer. J Clin Oncol 23:842–849

    Article  CAS  Google Scholar 

  • Botos I, Scapozza L, Zhang D, Liotta LA, Meyer EF (1996) Batimastat, a potent matrix mealloproteinase inhibitor, exhibits an unexpected mode of binding. Proc Natl Acad Sci U S A 93:2749–2754

    Article  CAS  Google Scholar 

  • Bouchain G, Leit S, Frechette S, Khalil EA, Lavoie R, Moradei O, Woo SH, Fournel M, Yan PT, Kalita A, Trachy-Bourget MC, Beaulieu C, Li Z, Robert MF, MacLeod AR, Besterman JM, Delorme D (2003) Development of potential antitumor agents. Synthesis and biological evaluation of a new set of sulfonamide derivatives as histone deacetylase inhibitors. J Med Chem 46:820–830

    Article  CAS  Google Scholar 

  • Cai X, Zhai HX, Wang J, Forrester J, Qu H, Yin L, Lai CJ, Bao R, Qian C (2010) Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 53:2000–2009

    Article  CAS  Google Scholar 

  • Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T, Mitsiades N, Shringarpure R, LeBlanc R, Chauhan D, Munshi NC, Schlossman R, Richardson P, Griffin J, Anderson KC (2003) NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 102:2615–2622

    Article  CAS  Google Scholar 

  • Charrier C, Clarhaut J, Gesson JP, Estiu G, Wiest O, Roche J, Bertrand P (2009) Synthesis and modeling of new benzofuranone histone deacetylase inhibitors that stimulate tumor suppressor gene expression. J Med Chem 52:3112–3115

    Article  CAS  Google Scholar 

  • Chen L, Wilson D, Jayaram HN, Pankiewicz KW (2007) Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylases for cancer treatment. J Med Chem 50:6685–6691

    Article  CAS  Google Scholar 

  • Chen Y, Lopez-Sanchez M, Savoy DN, Billadeau DD, Dow GS, Kozikowski AP (2008) A series of potent and selective, triazolylphenyl-based histone deacetylases inhibitors with activity against pancreatic cancer cells and Plasmodium falciparum. J Med Chem 51:3437–3448

    Article  CAS  Google Scholar 

  • Chong CR, Qian DZ, Pan F, Wei Y, Pili R, Sullivan DJ Jr, Liu JO (2006) Identification of type 1 inosine monophosphate dehydrogenase as an antiangiogenic drug target. J Med Chem 49:2677–2680

    Article  CAS  Google Scholar 

  • Codd R, Braich N, Liu J, Soe CZ, Pakchung AA (2009) Zn(II)-dependent histone deacetylase inhibitors: suberoylanilidehydroxamic acid and trichostatin A. Int J Biochem Cell Biol 41:736–739

    Article  CAS  Google Scholar 

  • Curran S, Murray GI (2000) Matrix metalloproteinases: molecular aspects of their roles in tumour invasion and metastasis. Eur J Cancer 36:1621–1630

    Article  CAS  Google Scholar 

  • Dallavalle S, Cincinelli R, Nannei R, Merlini L, Morini G, Penco S, Pisano C, Vesci L, Barbarino M, Zuco V, De Cesare M, Zunino F (2009) Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur J Med Chem 44:1900–1912

    Article  CAS  Google Scholar 

  • DasGupta S, Murumkar PR, Giridhar R, Yadav MR (2009) Current perspective of TACE inhibitors: a review. Bioorg Med Chem 17:444–459

    Article  CAS  Google Scholar 

  • de Ruijter AJ, Kemp S, Kramer G, Meinsma RJ, Kaufmann JO, Caron HN, van Kuilenburg AB (2004) The novel histone deacetylase inhibitor BL1521 inhibits proliferation and induces apoptosis in neuroblastoma cells. Biochem Pharmacol 68:1279–1288

    Article  CAS  Google Scholar 

  • Dear AE, Liu HB, Mayes PA, Perlmutter P (2006) Conformational analogues of Oxamflatin as histone deacetylase inhibitors. Org Biomol Chem 4:3778–3784

    Article  CAS  Google Scholar 

  • Duan JJ, Chen L, Lu Z, Xue CB, Liu RQ, Covington MB, Qian M, Wasserman ZR, Vaddi K, Christ DD, Trzaskos JM, Newton RC, Decicco CP (2008) Discovery of beta-benzamidohydroxamic acids as potent, selective, and orally bioavailable TACE inhibitors. Bioorg Med Chem Lett 18:241–246

    Article  CAS  Google Scholar 

  • Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  CAS  Google Scholar 

  • Fennell KA, Miller MJ (2007) Syntheses of amamistatin fragments and determination of their HDAC and antitumor activity. Org Lett 9:1683–1685

    Article  CAS  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193

    Article  CAS  Google Scholar 

  • Floryk D, Huberman E (2006) Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145. Cancer Lett 231:20–29

    Article  CAS  Google Scholar 

  • Floryk D, Tollaksen SL, Giometti CS, Huberman E (2004) Differentiation of human prostate cancer PC-3 cells induced by inhibitors of inosine 5’-monophosphate dehydrogenase. Cancer Res 64:9049–9056

    Article  CAS  Google Scholar 

  • Gallinari P, Di Marco S, Jones P, Pallaoro M, Steinkuhler C (2007) HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17:195–211

    CAS  Google Scholar 

  • Gediya LK, Chopra P, Purushottamachar P, Maheshwari N, Njar VC (2005) A new simple and high-yield synthesis of suberoylanilide hydroxamic acid and its inhibitory effect alone or in combination with retinoids on proliferation of human prostate cancer cells. J Med Chem 48:5047–5051

    Article  CAS  Google Scholar 

  • Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, Masson E, Rae P, Laird G, Sharma S, Kantarjian H, Dugan M, Albitar M, Bhalla K (2006) A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res 12:4628–4635

    Article  CAS  Google Scholar 

  • Gilmore JL, King BW, Harris C, Maduskuie T, Mercer SE, Liu RQ, Covington MB, Qian M, Ribadeneria MD, Vaddi K, Trzaskos JM, Newton RC, Decicco CP, Duan JJ (2006) Synthesis and structure-activity relationship of a novel, achiral series of TNF-alpha converting enzyme inhibitors. Bioorg Med Chem Lett 16:2699–2704

    Article  CAS  Google Scholar 

  • Glenn MP, Kahnberg P, Boyle GM, Hansford KA, Hans D, Martyn AC, Parsons PG, Fairlie DP (2004) Antiproliferative and phenotype-transforming antitumor agents derived from cysteine. J Med Chem 47:2984–2994

    Article  CAS  Google Scholar 

  • He R, Chen Y, Chen Y, Ougolkov AV, Zhang JS, Savoy DN, Billadeau DD, Kozikowski AP (2010) Synthesis and biological evaluation of triazol-4-ylphenyl-bearing histone deacetylase inhibitors as anticancer agents. J Med Chem 53:1347–1356

    Article  CAS  Google Scholar 

  • Holms J, Mast K, Marcotte P, Elmore I, Li J, Pease L, Glaser K, Morgan D, Michaelides M, Davidsen S (2001) Discovery of selective hydroxamic acid inhibitors of tumor necrosis factor-alpha converting enzyme. Bioorg Med Chem Lett 11:2907–2910

    Article  CAS  Google Scholar 

  • Howman RA, Prince HM (2011) New drug therapies in peripheral T-cell lymphoma. Expert Rev Anticancer Ther 11:457–472

    Article  CAS  Google Scholar 

  • Huang WJ, Chen CC, Chao SW, Yu CC, Yang CY, Guh JH, Lin YC, Kuo CI, Yang P, Chang CI (2011) Synthesis and evaluation of aliphatic-chain hydroxamates capped with osthole derivatives as histone deacetylase inhibitors. Eur J Med Chem 46:4042–4049

    Article  CAS  Google Scholar 

  • Hunt JT, Ding CZ, Batorsky R, Bednarz M, Bhide R, Cho Y, Chong S, Chao S, Gullo-Brown J, Guo P, Kim SH, Lee FY, Leftheris K, Miller A, Mitt T, Patel M, Penhallow BA, Ricca C, Rose WC, Schmidt R, Slusarchyk WA, Vite G, Manne V (2000) Discovery of (R)-7-cyano-2,3,4, 5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3-(phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J Med Chem 43:3587–3595

    Article  CAS  Google Scholar 

  • Inai K, Tsutani H, Yamauchi T, Nakamura T, Ueda T (1998) Differentiation and reduction of intracellular GTP levels in HL-60 and U937 cells upon treatment with IMP dehydrogenase inhibitors. Adv Exp Med Biol 431:549–553

    Article  CAS  Google Scholar 

  • Inai K, Tsutani H, Yamauchi T, Fukushima T, Iwasaki H, Imamura S, Wano Y, Nemoto Y, Naiki H, Ueda T (2000) Differentiation induction in non-lymphocytic leukemia cells upon treatment with mycophenolate mofetil. Leuk Res 24:761–768

    Article  CAS  Google Scholar 

  • Jiang J, Thyagarajan-Sahu A, Krchnak V, Jedinak A, Sandusky GE, Sliva D (2012) NAHA, a novel hydroxamic acid-derivative, inhibits growth and angiogenesis of breast cancer in vitro and in vivo. PLoS One 7:e34283

    Article  CAS  Google Scholar 

  • Jose B, Okamura S, Kato T, Nishino N, Sumida Y, Yoshida M (2004) Toward an HDAC6 inhibitor: synthesis and conformational analysis of cyclic hexapeptide hydroxamic acid designed from alpha-tubulin sequence. Bioorg Med Chem 12:1351–1356

    Article  CAS  Google Scholar 

  • Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P (1999) Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 42:4669–4679

    Article  CAS  Google Scholar 

  • Kahnberg P, Lucke AJ, Glenn MP, Boyle GM, Tyndall JD, Parsons PG, Fairlie DP (2006) Design, synthesis, potency, and cytoselectivity of anticancer agents derived by parallel synthesis from alpha-aminosuberic acid. J Med Chem 49:7611–7622

    Article  CAS  Google Scholar 

  • Kenny PA (2007) TACE: a new target in epidermal growth factor receptor dependent tumors. Differentiation 75:800–808

    Article  CAS  Google Scholar 

  • Keystone EC (2011) Does anti-tumor necrosis factor-alpha therapy affect risk of serious infection and cancer in patients with rheumatoid arthritis? A review of longterm data. J Rheumatol 38:1552–1562

    Article  CAS  Google Scholar 

  • Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T (1993) Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem 268:22429–22435

    CAS  Google Scholar 

  • Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S (1999) Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 18:2461–2470

    Article  CAS  Google Scholar 

  • Kim HM, Lee K, Park BW, Ryu DK, Kim K, Lee CW, Park SK, Han JW, Lee HY, Lee HY, Han G (2006) Synthesis, enzymatic inhibition, and cancer cell growth inhibition of novel delta-lactam-based histone deacetylase (HDAC) inhibitors. Bioorg Med Chem Lett 16:4068–4070

    Article  CAS  Google Scholar 

  • Kokubo SS K, Shinohara C, Tsuji T, Uemura D (2000) Structures of amamistatins A and B, novel growth inhibitors of human tumor cell lines from nocardia asteroides. Tetrahedron 56:5

    Google Scholar 

  • Kottirsch G, Koch G, Feifel R, Neumann U (2002) Beta-aryl-succinic acid hydroxamates as dual inhibitors of matrix metalloproteinases and tumor necrosis factor alpha converting enzyme. J Med Chem 45:2289–2293

    Article  CAS  Google Scholar 

  • Kovacic P, Edwards CL (2011) Hydroxamic acids (therapeutics and mechanism): chemistry, acyl nitroso, nitroxyl, reactive oxygen species, and cell signaling. J Recept Signal Transduct Res 31:10–19

    Article  CAS  Google Scholar 

  • Kozikowski AP, Chen Y, Gaysin AM, Savoy DN, Billadeau DD, Kim KH (2008) Chemistry, biology, and QSAR studies of substituted biaryl hydroxamates and mercaptoacetamides as HDAC inhibitors-nanomolar-potency inhibitors of pancreatic cancer cell growth. Chem Med Chem 3:487–501

    CAS  Google Scholar 

  • Li NG, Shi ZH, Tang YP, Wei L, Lian Y, Duan JA (2012) Discovery of selective small molecular TACE inhibitors for the treatment of rheumatoid arthritis. Curr Med Chem 19:2924–2956

    Article  CAS  Google Scholar 

  • Low JA, Johnson MD, Bone EA, Dickson RB (1996) The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin Cancer Res 2:1207–1214

    CAS  Google Scholar 

  • Lu Z, Ott GR, Anand R, Liu RQ, Covington MB, Vaddi K, Qian M, Newton RC, Christ DD, Trzaskos J, Duan JJ (2008) Potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE): discovery of indole, benzofuran, imidazopyridine and pyrazolopyridine P1′ substituents. Bioorg Med Chem Lett 18:1958–1962

    Article  CAS  Google Scholar 

  • Mahboobi S, Dove S, Sellmer A, Winkler M, Eichhorn E, Pongratz H, Ciossek T, Baer T, Maier T, Beckers T (2009) Design of chimeric histone deacetylase- and tyrosine kinase-inhibitors: a series of imatinib hybrides as potent inhibitors of wild-type and mutant BCR-ABL, PDGF-Rbeta, and histone deacetylases. J Med Chem 52:2265–2279

    Article  CAS  Google Scholar 

  • Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    Article  CAS  Google Scholar 

  • Marmor MD, Skaria KB, Yarden Y (2004) Signal transduction and oncogenesis by ErbB/HER receptors. Int J Radiat Oncol Biol Phys 58:903–913

    Article  CAS  Google Scholar 

  • Mass RD (2004) The HER receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys 58:932–940

    Article  CAS  Google Scholar 

  • McCawley LJ, Matrisian LM (2000) Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol Med Today 6:149–156

    Article  CAS  Google Scholar 

  • Millar AW, Brown PD, Moore J, Galloway WA, Cornish AG, Lenehan TJ, Lynch KP (1998) Results of single and repeat dose studies of the oral matrix metalloproteinase inhibitor marimastat in healthy male volunteers. Br J Clin Pharmacol 45:21–26

    Article  CAS  Google Scholar 

  • Miller MJ (1989) Synthesis and therapeutic potential of hydroxamic acid-based siderophores and analogues. Chem Rev 89:1563–1579

    Article  CAS  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  CAS  Google Scholar 

  • Mochizuki S, Okada Y (2007) ADAMs in cancer cell proliferation and progression. Cancer Sci 98:621–628

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  Google Scholar 

  • Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149

    CAS  Google Scholar 

  • Nuti E, Tuccinardi T, Rossello A (2007) Matrix metalloproteinase inhibitors: new challenges in the era of post broad-spectrum inhibitors. Curr Pharm Des 13:2087–2100

    Article  CAS  Google Scholar 

  • Nuti E, Casalini F, Avramova SI, Santamaria S, Fabbi M, Ferrini S, Marinelli L, LaPietra V, Limongelli V, Novellino E, Cercignani G, Orlandini E, Nencetti S, Rossello A (2010) Potent arylsulfonamide inhibitors of tumor necrosis factor-alpha converting enzyme able to reduce activated leukocyte cell adhesion molecule shedding in cancer cell models. J Med Chem 53:2622–2635

    Google Scholar 

  • Oanh DT, Hai HV, Park SH, Kim HJ, Han BW, Kim HS, Hong JT, Han SB, Hue VT, Nam NH (2011) Benzothiazole-containing hydroxamic acids as histone deacetylase inhibitors and antitumor agents. Bioorg Med Chem Lett 21:7509–7512

    Article  CAS  Google Scholar 

  • Ott GR, Asakawa N, Lu Z, Liu RQ, Covington MB, Vaddi K, Qian M, Newton RC, Christ DD, Traskos JM, Decicco CP, Duan JJ (2008a) Alpha, beta-cyclic-beta-benzamido hydroxamic acids: novel templates for the design, synthesis, and evaluation of selective inhibitors of TNF-alpha converting enzyme (TACE). Bioorg Med Chem Lett 18:694–699

    Article  CAS  Google Scholar 

  • Ott GR, Asakawa N, Liu RQ, Covington MB, Qian M, Vaddi K, Newton RC, Trzaskos JM, Christ DD, Galya L, Scholz T, Marshall W, Duan JJ (2008b) Alpha, beta-cyclic-beta-benzamido hydroxamic acids: novel oxaspiro[4.4]nonane templates for the discovery of potent, selective, orally bioavailable inhibitors of tumor necrosis factor-alpha converting enzyme (TACE). Bioorg Med Chem Lett 18:1288–1292

    Article  CAS  Google Scholar 

  • Ouaissi M, Ouaissi A (2006) Histone deacetylase enzymes as potential drug targets in cancer and parasitic diseases. J Biomed Biotechnol 2006:13474

    Article  CAS  Google Scholar 

  • Ouwehand K, de Ruijter AJ, van Bree C, Caron HN, van Kuilenburg AB (2005) Histone deacetylase inhibitor BL1521 induces a G1-phase arrest in neuroblastoma cells through altered expression of cell cycle proteins. FEBS Lett 579:1523–1528

    Article  CAS  Google Scholar 

  • Piazza T, Cha E, Bongarzone I, Canevari S, Bolognesi A, Polito L, Bargellesi A, Sassi F, Ferrini S, Fabbi M (2005) Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J Cell Sci 118:1515–1525

    Article  CAS  Google Scholar 

  • Plumb JA, Williams RJ, Finn PW, Bandara MJ, Romero MR, Watkins CJ, La Thangue NB, Brown R (2002) Inhibition of tumour cell growth in vitro and in vivo by the histone deacetylase inhibitor PXD101. Proc Am Assoc Cancer Res 43:333–334

    Google Scholar 

  • Plumb JA, Finn PW, Williams RJ, Bandara MJ, Romero MR, Watkins CJ, La Thangue NB, Brown R (2003) Pharmacodynamic response and inhibition of growth of human tumor xenografts by the novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 2:721–728

    CAS  Google Scholar 

  • Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075

    Article  CAS  Google Scholar 

  • Ramalingam SS, Belani CP, Ruel C, Frankel P, Gitlitz B, Koczywas M, Espinoza-Delgado I, Gandara D (2009) Phase II study of belinostat (PXD101), a histone deacetylase inhibitor, for second line therapy of advanced malignant pleural mesothelioma. J Thorac Oncol 4:97–101

    Article  Google Scholar 

  • Renkiewicz R, Qiu L, Lesch C, Sun X, Devalaraja R, Cody T, Kaldjian E, Welgus H, Baragi V (2003) Broad-spectrum matrix metalloproteinase inhibitor marimastat induced musculoskeletal side effects in rats. Arthritis Rheum 48:1742–1749

    Google Scholar 

  • Rossi C, Porcelloni M, D’Andrea P, Fincham CI, Ettorre A, Mauro S, Squarcia A, Bigioni M, Parlani M, Nardelli F, Binaschi M, Maggi CA, Fattori D (2011) Alkyl piperidine and piperazine hydroxamic acids as HDAC inhibitors. Bioorg Med Chem Lett 21:2305–2308

    Article  CAS  Google Scholar 

  • Saban N, Bujak M (2009) Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother Pharmacol 64:213–221

    Article  CAS  Google Scholar 

  • Salmi-Smail C, Fabre A, Dequiedt F, Restouin A, Castellano R, Garbit S, Roche P, Morelli X, Brunel JM, Collette Y (2010) Modified cap group suberoylanilide hydroxamic acid histone deacetylase inhibitor derivatives reveal improved selective antileukemic activity. J Med Chem 53:3038–3047

    Article  CAS  Google Scholar 

  • Santos MA, Enyedy EA, Nuti E, Rossello A, Krupenko NI, Krupenko SA (2007) Methotrexate gamma-hydroxamate derivatives as potential dual target antitumor drugs. Bioorg Med Chem 15:1266–1274

    Article  CAS  Google Scholar 

  • Scozzafava A, Supuran CT (2000) Carbonic anhydrase and matrix metalloproteinase inhibitors: sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes. J Med Chem 43:3677–3687

    Article  CAS  Google Scholar 

  • Scuto A, Kirschbaum M, Kowolik C, Kretzner L, Juhasz A, Atadja P, Pullarkat V, Bhatia R, Forman S, Yen Y, Jove R (2008) The novel histone deacetylase inhibitor, LBH589, induces expression of DNA damage response genes and apoptosis in Ph-acute lymphoblastic leukemia cells. Blood 111:5093–5100

    Article  CAS  Google Scholar 

  • Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A, Varki NM, Appelt K (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials. Ann N Y Acad Sci 878:236–270

    Article  CAS  Google Scholar 

  • Sonoda H, Nishida K, Yoshioka T, Ohtani M, Sugita K (1996) Oxamflatin: a novel compound which reverses malignant phenotype to normal one via induction of JunD. Oncogene 1321:143–149

    Google Scholar 

  • Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: Eastern Cooperative Oncology Group trial E2196. J Clin Oncol 22:4683–4690

    Article  CAS  Google Scholar 

  • Stanger KJ, Sliva D, Jiang J, Krchnak V (2006) Synthesis and screening of N-alkyl hydroxamates for inhibition of cancer cell proliferation. Comb Chem High Throughput Screen 9:651–661

    Article  CAS  Google Scholar 

  • Steward WP, Thomas AL (2000) Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 9:2913–2922

    Article  CAS  Google Scholar 

  • Su H, Nebbioso A, Carafa V, Chen Y, Yang B, Altucci L, You Q (2008) Design, synthesis and biological evaluation of novel compounds with conjugated structure as anti-tumor agents. Bioorg Med Chem 16:7992–8002

    Article  CAS  Google Scholar 

  • Sundberg TB, Ney GM, Subramanian C, Opipari AW Jr, Glick GD (2006) The immunomodulatory benzodiazepine Bz-423 inhibits B-cell proliferation by targeting c-myc protein for rapid and specific degradation. Cancer Res 66:1775–1782

    Article  CAS  Google Scholar 

  • Swart GW, Lunter PC, Kilsdonk JW, Kempen LC (2005) Activated leukocyte cell adhesion molecule (ALCAM/CD166): signaling at the divide of melanoma cell clustering and cell migration? Cancer Metastasis Rev 24:223–236

    Article  CAS  Google Scholar 

  • Tardibono LP, Miller MJ (2009) Synthesis and anticancer activity of new hydroxamic acid containing 1,4-benzodiazepines. Org Lett 11:1575–1578

    Article  CAS  Google Scholar 

  • van't Riet B, Wampler GL, Elford HL (1979) Synthesis of hydroxy- and amino-substituted benzohydroxamic acids: inhibition of ribonucleotide reductase and antitumor activity. J Med Chem 22:589–592

    Google Scholar 

  • Vojinovic J, Damjanov N (2011) HDAC inhibition in rheumatoid arthritis and juvenile idiopathic arthritis. Mol Med 17:397–403

    Article  CAS  Google Scholar 

  • Wang H, Yu N, Song H, Chen D, Zou Y, Deng W, Lye PL, Chang J, Ng M, Sun ET, Sangthongpitag K, Wang X, Wu X, Khng HH, Fang L, Goh SK, Ong WC, Bonday Z, Stunkel W, Poulsen A, Entzeroth M (2009) N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: design, synthesis, SAR studies, and in vivo antitumor activity. Bioorg Med Chem Lett 19:1403–1408

    Article  CAS  Google Scholar 

  • Wang H, Lim ZY, Zhou Y, Ng M, Lu T, Lee K, Sangthongpitag K, Goh KC, Wang X, Wu X, Khng HH, Goh SK, Ong WC, Bonday Z, Sun ET (2010) Acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: synthesis, SAR, and in vivo antitumor activity. Bioorg Med Chem Lett 20:3314–3321

    Article  CAS  Google Scholar 

  • Yadav RK, Gupta SP, Sharma PK, Patil VM (2011) Recent advances in studies on hydroxamates as matrix metalloproteinase inhibitors: a review. Curr Med Chem 18:1704–1722

    Article  CAS  Google Scholar 

  • Yao W, Zhuo J, Burns DM, Xu M, Zhang C, Li YL, Qian DQ et al (2007) Discovery of a potent, selective, and orally active human epidermal growth factor receptor-2 sheddase inhibitor for the treatment of cancer. J Med Chem 50:603–606

    Article  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265:17174–17179

    CAS  Google Scholar 

  • Zhang C, Lovering F, Behnke M, Zask A, Sandanayaka V, Sun L, Zhu Y, Xu W, Zhang Y, Levin JI (2009) Synthesis and activity of quinolinylmethyl P1′ alpha-sulfone piperidine hydroxamate inhibitors of TACE. Bioorg Med ChemLett 19:3445–3448

    CAS  Google Scholar 

  • Zhang L, Fang H, Xu W (2010a) Strategies in developing promising histone deacetylase inhibitors. Med Res Rev 30:585–602

    Article  CAS  Google Scholar 

  • Zhang Y, Feng J, Liu C, Zhang L, Jiao J, Fang H, Su L, Zhang X, Zhang J, Li M, Wang B, Xu W (2010b) Design, synthesis and preliminary activity assay of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives as novel Histone deacetylases (HDACs) inhibitors. Bioorg Med Chem 18:1761–1772

    Article  CAS  Google Scholar 

  • Zhang Y, Feng J, Jia Y, Wang X, Zhang L, Liu C, Fang H, Xu W (2011a) Development of tetrahydroisoquinoline-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities. J Med Chem 54:2823–2838

    Article  CAS  Google Scholar 

  • Zhang Y, Fang H, Feng J, Jia Y, Wang X, Xu W (2011b) Discovery of a tetrahydroisoquinoline-based hydroxamic acid derivative (ZYJ-34c) as histone deacetylase inhibitor with potent oral antitumor activities. J Med Chem 54:5532–5539

    Article  CAS  Google Scholar 

  • Zhang Y, Feng J, Jia Y, Xu Y, Liu C, Fang H, Xu W (2011c) Design, synthesis and primary activity assay of tripeptidomimetics as histone deacetylase inhibitors with linear linker and branched cap group. Eur J Med Chem 46:5387–5397

    Article  CAS  Google Scholar 

  • Zuo M, Zheng YW, Lu SM, Li Y, Zhang SQ (2012) Synthesis and biological evaluation of N-aryl salicylamides with a hydroxamic acid moiety at 5-position as novel HDAC-EGFR dual inhibitors. Bioorg Med Chem 20:4405–4412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, M.K., Singh, G., Gupta, S. (2013). Hydroxamic Acid Derivatives as Potential Anticancer Agents. In: Gupta, S. (eds) Hydroxamic Acids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38111-9_7

Download citation

Publish with us

Policies and ethics