Skip to main content

Hydroxamates as Ribonucleotide Reductase Inhibitors

  • Chapter
  • First Online:
Hydroxamic Acids
  • 1374 Accesses

Abstract

This chapter presents the progress in the design and discovery of hydroxamic acids acting as ribonucleotide reductase (RR) inhibitors. The RR inhibitors act as anticancer agents. The initial sections present a background about hydroxamic acids, role of RR inhibitors as anticancer agents, and information on three-dimensional structure of RR. The remaining sections, discuss the mode of action of these compounds and their progress in computer-aided drug design. Finally, conclusive remarks and directives toward future research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BHA:

Butylated hydroxyanisole

CoMFA:

Comparative molecular field analysis

CoMSIA:

Comparative molecular similarity index analysis

EPR:

Electron paramagnetic resonance

HAG:

N-hydroxy amino guanidine

HDAC:

Histone deacetylase

HG:

Hydroxyguanidines

hRRM2:

Human ribonucleotide reductase M2 subunit

HSC:

Hydroxysemicarbazones

HU:

Hydroxyurea

LOX:

Lipoxygenase

MD:

Molecular dynamics

MMP:

Matrix metalloproteinases

PDF:

Peptide deformylase

QM/MM:

Quantum mechanics/molecular mechanics

RR:

Ribonucleotide reductase

RRR2:

Ribonucleotide reductase R2 subunit

VS:

Virtual screening

References

  • Adams RLP, Lindsay J (1967) Hydroxyurea. J Biol Chem 242(6):1314–1317

    CAS  Google Scholar 

  • Anderson AC (2003) The process of structure-based drug design. Chem Biol 10(9):787–797

    Article  CAS  Google Scholar 

  • Bacilieri M, Moro S (2006) Ligand-based drug design methodologies in drug discov process: an overview. Curr Drug Disc Technol 3(3):155–165

    Article  CAS  Google Scholar 

  • Basu A, Sinha B (2012) Understanding the molecular interactions of different radical scavengers with ribonucleotide reductase M2 (hRRM2) domain: opening the gates and gaining access. J Comput Aided Mol Des 26(7):865–881

    Article  CAS  Google Scholar 

  • Basu A, Sinha BN, Saiko P, Graser G, Szekeres T (2011) N-Hydroxy-N′-aminoguanidines as anti-cancer lead molecule: QSAR, synthesis and biological evaluation. Bioorg Med Chem Lett 21(11):3324–3328

    Article  CAS  Google Scholar 

  • Bell CL, Nambury C, Bauer L (1964) The structure of amidoximes. J Org Chem 29(10):2873–2877

    Article  CAS  Google Scholar 

  • Blundell TL (1996) Structure-based drug design. Nature 384(6604 Suppl):23

    CAS  Google Scholar 

  • Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50

    Article  CAS  Google Scholar 

  • Cerqueira NM, Pereira S, Fernandes PA, Ramos MJ (2005) Overview of ribonucleotide reductase inhibitors: an appealing target in anti-tumour therapy. Curr Med Chem 12(11):1283–1294

    Article  CAS  Google Scholar 

  • Chen D, Yuan Z (2005) Therap potential of pept deformylase inhibitors J 14(9):1107–1116

    CAS  Google Scholar 

  • Chetan B, Bunha M, Jagrat M, Sinha BN, Saiko P, Graser G, Szekeres T, Raman G, Rajendran P, Moorthy D (2010) Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity. Bioorg Med Chem Lett 20(13):3906–3910

    Article  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967

    Article  CAS  Google Scholar 

  • Donehower RC (1992) An overview of the clinical experience with hydroxyurea. Semin Oncol 19(3 Suppl 9):11–19

    CAS  Google Scholar 

  • Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discov: methods for virtual ligand screening and profiling. Br J Pharmacol 152(1):9–20

    Article  CAS  Google Scholar 

  • Eklund H, Uhlin U, Färnegårdh M, Logan DT, Nordlund P (2001) Structure and function of the radical enzyme ribonucleotide reductase. Prog Biophys Mol Biol 77(3):177–268

    Article  CAS  Google Scholar 

  • Elford HL (1968) Effect of hydroxyurea on ribonucleotide reductase. Biochem Biophys Res Commun 33(1):129–135

    Article  CAS  Google Scholar 

  • Elford HL (1994) Method of treating hemoglobinopathies. US Patent 5366996

    Google Scholar 

  • Elford HL, van′t Riet B (1985) Inhibition of nucleoside diphosphate reductase by hydroxybenzohydroxamic acid derivatives. Pharmacol Ther 29(2):239–254

    Google Scholar 

  • Elgren TE, Hendrich MP, Que L Jr (1993) Azide binding to the diferrous clusters of the R2 protein of ribonucleotide reductase from Escherichia coli. J Am Chem Soc 115(20):9291–9292

    Article  CAS  Google Scholar 

  • Figul M, Söling A, Dong H, Chou TC, Rainov N (2003) Combined effects of temozolomide and the ribonucleotide reductase inhibitors didox and trimidox in malignant brain tumor cells. Cancer Chemother Pharmacol 52(1):41–46

    Article  CAS  Google Scholar 

  • Flora KP, van′t Riet B, Wampler GL (1978) Antitumor activity of amidoximes (hydroxyurea analogs) in murine tumor systems. Cancer Res 38(5):1291–1295

    Google Scholar 

  • Fontecave M (1998) Ribonucleotide reductases and radical reactions. Cell Mol Life Sci 54(7):684–695

    Article  CAS  Google Scholar 

  • Fontecave M, Lepoivre M, Elleingand E, Gerez C, Guittet O (1998) Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett 421(3):277–279

    Article  CAS  Google Scholar 

  • Fritzer-Szekeres M, Grusch M, Luxbacher C, Horvath S, Krupitza G, Elford HL, Szekeres T (2000) Trimidox, an inhibitor of ribonucleotide reductase, induces apoptosis and activates caspases in HL-60 promyelocytic leukemia cells. Exp Hematol 28(8):924–930

    Article  CAS  Google Scholar 

  • Fritzer-Szekeres M, Novotny L, Vachalkova A, Findenig G, Elford HL, Szekeres T (1997) Iron binding capacity of didox (3, 4-dihydroxybenzohydroxamic acid) and amidox (3, 4-dihydroxybenzamidoxime) new inhibitors of the enzyme ribonucleotide reductase. Life Sci 61(22):2231–2237

    Article  CAS  Google Scholar 

  • Fritzer-Szekeres M, Salamon A, Grusch M, Horvath Z, Höchtl T, Steinbrugger R, Jäger W, Krupitza G, Elford HL, Szekeres T (2002) Trimidox, an inhibitor of ribonucleotide reductase, synergistically enhances the inhibition of colony formation by Ara-C in HL-60 human promyelocytic leukemia cells. Biochem Pharmacol 64(3):481–485

    Article  CAS  Google Scholar 

  • Gane PJ, Dean PM (2000) Recent advances in structure-based rational drug design. Curr Opin Struct Biol 10(4):401–404

    Article  CAS  Google Scholar 

  • Goldman JM (1997) Optimizing treatment for chronic myeloid leukemia. New Engl J Med 337(4):270–271

    Article  CAS  Google Scholar 

  • Good AC, Hermsmeier MA, Hindle S (2004) Measuring CAMD technique performance: a virtual screening case study in the design of validation experiments. J Comput Aided Mol Des 18(7):529–536

    Article  CAS  Google Scholar 

  • Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6(3):211–219

    Article  CAS  Google Scholar 

  • Handler N, Saiko P, Jaeger W, Szekeres T, Wacheck V, Berner H, Leisser K, Erker T (2008) Synthesis and cytotoxic activity of resveratrol-based compounds. Monatshefte für Chemie/Chemical Monthly 139(5):575–578

    Article  CAS  Google Scholar 

  • Hehlmann R, Berger U, Pfirrmann M, Hochhaus A, Metzgeroth G, Maywald O, Hasford J, Reiter A, Hossfeld D, Kolb H (2003) Randomized comparison of interferon α and hydroxyurea with hydroxyurea monotherapy in chronic myeloid leukemia (CML-Study II): prolongation of survival by the combination of interferon α and hydroxyurea. Leukemia 17(8):1529–1537

    Article  CAS  Google Scholar 

  • Himo F, Siegbahn PEM (2003) Quantum chemical studies of radical-containing enzymes. Chem Rev 103(6):2421–2456

    Article  CAS  Google Scholar 

  • Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking Sets for Molecular Docking. J Med Chem 49(23):6789–6801

    Article  CAS  Google Scholar 

  • Inayat MS, Chendil D, Mohiuddin M, Elford HL, Gallicchio VS, Ahmed MM (2002) Didox (a novel ribonucleotide reductase inhibitor) overcomes Bcl-2 mediated radiation resistance in prostate cancer cell line PC-3. Cancer Biol Ther 1(5):539

    Google Scholar 

  • Iyamu W, Adunyah S, Fasold H, Horiuchi K, Elford H, Asakura T, Turner E (2000) Enhancement of hemoglobin and F-cell production by targeting growth inhibition and differentiation of K562 cells with ribonucleotide reductase inhibitors (didox and trimidox) in combination with streptozotocin. Am J Hematol 63(4):176–183

    Article  CAS  Google Scholar 

  • Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67(1):71–98

    Article  CAS  Google Scholar 

  • Kandemirli F, Shvets N, Kovalishyn V, Dimoglo A (2006) Combined electronic-topological and neural networks study of some hydroxysemicarbazides as potential antitumor agents. J Mol Graphics Model 25(1):30–36

    Article  CAS  Google Scholar 

  • Kauppi B, Nielsen BB, Ramaswamy S, Kjøller Larsen I, Thelander M, Thelander L, Eklund H (1996) The three-dimensional structure of mammalian ribonucleotide reductase protein R2 reveals a more-accessible iron-radical site than escherichia coliR2. J Mol Biol 262(5):706–720

    Article  CAS  Google Scholar 

  • Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discov: methods and applications. Nat Rev Drug Discov 3(11):935–949

    Article  CAS  Google Scholar 

  • Klebe G (2000) Recent developments in structure-based drug design. J Mol Med 78(5):269–281

    Article  CAS  Google Scholar 

  • Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37(24):4130–4146

    Article  CAS  Google Scholar 

  • Kolberg M, Strand KR, Graff P, Kristoffer Andersson K (2004) Structure, function, and mechanism of ribonucleotide reductases. Biochim Biophys Acta (BBA)-Proteins & Proteomics 1699(1):1–34

    Google Scholar 

  • Končić MZ, Barbarić M, Perković I, Zorc B (2011) Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules 16(8):6232–6242

    Google Scholar 

  • Krakoff IH, Brown NC, Reichard P (1968) Inhibition of ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res 28(8):1559–1565

    CAS  Google Scholar 

  • Lassmann G, Pötsch S (1995) Structure of transient radicals from cytostatic-active p-alkoxyphenols by continuous-flow EPR. Free Radical Biol Med 19(5):533–539

    Article  CAS  Google Scholar 

  • Logan DT, Su XD, Åberg A, Regnström K, Hajdu J, Eklund H, Nordlund P (1996) Crystal structure of reduced protein R2 of ribonucleotide reductase: the structural basis for oxygen activation at a dinuclear iron site. Structure 4(9):1053–1064

    Article  CAS  Google Scholar 

  • Luo J, Gräslund A (2011) Ribonucleotide reductase inhibition by p-alkoxyphenols studied by molecular docking and molecular dynamics simulations. Arch Biochem Biophys 516(1):29–34

    Article  CAS  Google Scholar 

  • Lynch J, Juarez-Garcia C, Münck E, Que Jr L (1989) Mössbauer and EPR studies of the binuclear iron center in ribonucleotide reductase from Escherichia coli. A new iron-to-protein stoichiometry. J Biol Chem 264(14):8091–8096

    Google Scholar 

  • Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7(20):1047–1055

    Article  CAS  Google Scholar 

  • Marshall GR, Beusen DD (1995) Molecular modeling in drug design. In: Abraham DJ (ed) Burger’s Medicinal Chemistry, Drug discov and development, vol 1, 6th edn. John Wiley and Sons, Inc., p 77–155

    Google Scholar 

  • Mayhew C, Oakley O, Piper J, Hughes N, Phillips J, Birch N, Elford H, Gallicchio V (1997) Effective use of ribonucleotide reductase inhibitors (didox and trimidox) alone or in combination with didanosine (ddI) to suppress disease progression and increase survival in murine acquired immunodeficiency syndrome (MAIDS). Cellular and molecular biology (Noisy-le-Grand, France) 43(7):1019

    Google Scholar 

  • Monzyk B, Crumbliss AL (1979) Mechanism of ligand substitution on high-spin iron(III) by hydroxamic acid chelators. Thermodynamic and kinetic studies on the formation and dissociation of a series of monohydroxamatoiron(III) complexes. J Am Chem Soc 101(21):6203–6213

    Article  CAS  Google Scholar 

  • Moore EC (1969) The effects of ferrous ion and dithioerythritol on inhibition by hydroxyurea of ribonucleotide reductase. Cancer Res 29(2):291

    CAS  Google Scholar 

  • Mulliez E, Fontecave M (1999) Ribonucleotide reductases: metal and free radical interplay. Coord Chem Rev 185–186:775–793

    Article  Google Scholar 

  • Natarajan S, Mathews R (2011) Modeling and proposed mechanism of two radical scavengers through docking to curtail the action of ribonucleotide reductase. J Biophy Struc Biol 3(2):38–48

    CAS  Google Scholar 

  • Nocentini G (1996) Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit Rev Oncol Hematol 22(2):89–126

    Article  CAS  Google Scholar 

  • Nordlund P, Eklund H (1993) Structure and function of the Escherichia coli ribonucleotide reductase protein R2. J Mol Biol 232(1):123–164

    Article  CAS  Google Scholar 

  • Nordlund P, Sjöberg BM, Eklund H (1990) Three-dimensional structure of the free radical protein of ribonucleotide reductase. Nature 345:593–598

    Article  CAS  Google Scholar 

  • Oprea TI, Matter H (2004) Integrating virtual screening in lead discov. Curr Opin Chem Biol 8(4):349–358

    Article  CAS  Google Scholar 

  • Per EMS (2002) A comparison of dioxygen bond-cleavage in ribonucleotide reductase (RNR) and methane monooxygenase (MMO). Chem Phys Lett 351(3–4):311–318

    Google Scholar 

  • Pergola C, Werz O (2010) 5-Lipoxygenase inhibitors: a review of recent developments and patents. Expert Opin Ther Pat 20(3):355–375

    Article  CAS  Google Scholar 

  • Piver M, Barlow J, Vongtama V, Blumenson L (1983) Hydroxyurea: a radiation potentiator in carcinoma of the uterine cervix. A randomized double-blind study. Am J Obstet Gynecol 147(7):803

    CAS  Google Scholar 

  • Popović-Bijelić A, Kowol CR, Lind MES, Luo J, Himo F, Enyedy ÉA, Arion VB, Gräslund A (2011) Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J Inorg Biochem 105(11):1422–1431

    Article  Google Scholar 

  • Pötsch S, Drechsler H, Liermann B, Gräslund A, Lassmann G (1994) p-Alkoxyphenols, a new class of inhibitors of mammalian R2 ribonucleotide reductase: possible candidates for antimelanotic drugs. Mol Pharmacol 45(4):792–796

    Google Scholar 

  • Priya PL, Shanmughavel P (2009) A docking model of human ribonucleotide reductase with flavin and phenosafranine. Bioinformation 4(3):123–126

    Article  Google Scholar 

  • Raichurkar AV, Kulkarni VM (2003) Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA. J Med Chem 46(21):4419–4427

    Article  CAS  Google Scholar 

  • Raje N, Kumar S, Hideshima T, Ishitsuka K, Yasui H, Chhetri S, Vallet S, Vonescu E, Shiraishi N, Kiziltepe T (2006) Didox, a ribonucleotide reductase inhibitor, induces apoptosis and inhibits DNA repair in multiple myeloma cells. Br J Haematol 135(1):52–61

    Article  CAS  Google Scholar 

  • Reichard P (1993) From RNA to DNA, why so many ribonucleotide reductases? Science 260(5115):1773–1777

    Article  CAS  Google Scholar 

  • Reichard P, Ehrenberg A (1983) Ribonucleotide reductase–a radical enzyme. Science 221:514–519

    Article  CAS  Google Scholar 

  • Ren S, Wang R, Komatsu K, Bonaz-Krause P, Zyrianov Y, McKenna C, Csipke C, Tokes Z, Lien E (2002) Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new schiff bases of hydroxysemicarbazide as potential antitumor agents†. J Med Chem 45(2):410–419

    Article  CAS  Google Scholar 

  • Rosenberger G, Fuhrmann G, Grusch M, Fassl S, Elford HL, Smid K, Peters GJ, Szekeres T, Krupitza G (2000) The ribonucleotide reductase inhibitor trimidox induces c-myc and apoptosis of human ovarian carcinoma cells. Life Sci 67(26):3131–3142

    Article  CAS  Google Scholar 

  • Saban N, Bujak M (2009) Hydroxyurea and hydroxamic acid derivatives as antitumor drugs. Cancer Chemother Pharmacol 64(2):213–221

    Article  CAS  Google Scholar 

  • Saiko P, Graser G, Giessrigl B, Lackner A, Grusch M, Krupitza G, Basu A, Sinha BN, Jayaprakash V, Jaeger W (2011) A novel N-hydroxy-N′-aminoguanidine derivative inhibits ribonucleotide reductase activity: effects in human HL-60 promyelocytic leukemia cells and synergism with arabinofuranosylcytosine (Ara-C). Biochem Pharmacol 81(1):50–59

    Article  CAS  Google Scholar 

  • Saiko P, Ozsvar-Kozma M, Bernhaus A, Jaschke M, Graser G, Lackner A, Grusch M, Horvath Z, Madlener S, Krupitza G (2007) N-hydroxy-N’-(3, 4, 5-trimethoxyphenyl)-3, 4, 5-trimethoxy-benzamidine, a novel resveratrol analog, inhibits ribonucleotide reductase in HL-60 human promyelocytic leukemia cells: synergistic antitumor activity with arabinofuranosylcytosine. Int J Oncol 31(5):1261

    CAS  Google Scholar 

  • Saiko P, Pemberger M, Horvath Z, Savinc I, Grusch M, Handler N, Erker T, Jaeger W, Fritzer-Szekeres M, Szekeres T (2008) Novel resveratrol analogs induce apoptosis and cause cell cycle arrest in HT29 human colon cancer cells: inhibition of ribonucleotide reductase activity. Oncol Rep 19(6):1621–1626

    CAS  Google Scholar 

  • Schrell UMH, Rittig MG, Anders M, Kiesewetter F, Marschalek R, Koch UH, Fahlbusch R (1997) Hydroxyurea for treatment of unresectable and recurrent meningiomas. I. Inhibition of primary human meningioma cells in culture and in meningioma transplants by induction of the apoptotic pathway. J Neurosurg 86(5):845–852

    Article  CAS  Google Scholar 

  • Schrell UMH, Rittig MG, Koch U, Marschalek R, Anders M (1996) Hydroxyurea for treatment of unresectable meningiomas. The Lancet 348(9031):888–889

    Article  CAS  Google Scholar 

  • Shao J, Zhou B, Chu B, Yen Y (2006) Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 6(5):409–431

    Article  CAS  Google Scholar 

  • Shao J, Zhou B, Zhu L, Bilio AJ, Su L, Yuan YC, Ren S, Lien EJ, Shih J, Yen Y (2005) Determination of the potency and subunit-selectivity of ribonucleotide reductase inhibitors with a recombinant-holoenzyme-based in vitro assay. Biochem Pharmacol 69(4):627–634

    Article  CAS  Google Scholar 

  • Silver RT, Woolf SH, Hehlmann R, Appelbaum FR, Anderson J, Bennett C, Goldman JM, Guilhot F, Kantarjian HM, Lichtin AE (1999) An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology. Blood 94(5):1517–1536

    CAS  Google Scholar 

  • Smith BD, Karp JE (2003) Ribonucleotide reductase: an old target with new potential. Leukemia Res 27(12):1075–1076

    Article  Google Scholar 

  • Smith P, Zhou B, Ho N, Yuan YC, Su L, Tsai SC, Yen Y (2009) 2.6 Å X-ray crystal structure of human p53R2, a p53-inducible ribonucleotide reductase. Biochemistry 48(46):11134–11141

    Article  CAS  Google Scholar 

  • Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44(7):1035–1042

    Article  CAS  Google Scholar 

  • Stearns B, Losee KA, Bernstein J (1963) Hydroxyurea. A new type of potential antitumor agent1. J Med Chem 6(2):201–201

    Article  CAS  Google Scholar 

  • Strand KR, Karlsen S, Kolberg M, Røhr ÅK, Görbitz CH, Andersson KK (2004) Crystal structural studies of changes in the native dinuclear iron center of ribonucleotide reductase protein R2 from mouse. J Biol Chem 279(45):46794–46801

    Article  CAS  Google Scholar 

  • Stubbe JA, Nocera DG, Yee CS, Chang MCY (2003) Radical initiation in the class I ribonucleotide reductase: long-range proton-coupled electron transfer? Chem Rev 103(6):2167–2202

    Article  CAS  Google Scholar 

  • Szekeres T, Fritzer M, Strobl H, Gharehbaghi K, Findenig G, Elford HL, Lhotka C, Schoen H, Jayaram H (1994a) Synergistic growth inhibitory and differentiating effects of trimidox and tiazofurin in human promyelocytic leukemia HL-60 cells. Blood 84(12):4316–4321

    CAS  Google Scholar 

  • Szekeres T, Gharehbaghi K, Fritzer M, Woody M, Srivastava A, Riet B, Jayaram HN, Elford HL (1994b) Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase. Cancer Chemother Pharmacol 34(1):63–66

    Article  CAS  Google Scholar 

  • Szekeres T, Vielnascher E, Novotny L, Vachalkova A, Fritzer M, Findenig G, Göbl R, Elford HL, Goldenberg H (2009) Iron binding capacity of trimidox (3, 4, 5-trihydroxybenzamidoxime), a new inhibitor of the enzyme ribonucleotide reductase. Clin Chem Lab Med 33(11):785–790

    Google Scholar 

  • Tai AW, Lien EJ, Lai MM, Khwaja TA (1984) Novel N-hydroxyguanidine derivatives as anticancer and antiviral agents. J Med Chem 27(2):236–238

    Article  CAS  Google Scholar 

  • Tang A, Lien EJ, Lai MM (1985) Optimization of the Schiff bases of N-hydroxy-N’-aminoguanidine as anticancer and antiviral agents. J Med Chem 28(8):1103–1106

    Article  CAS  Google Scholar 

  • Tihan T, Elford HL, Cory JG (1991) Studies on the mechanisms of inhibition of L1210 cell growth by 3, 4-dihydroxybenzohydroxamic acid and 3, 4-dihydroxybenzamidoxime. Adv Enzyme Regul 31:71–83

    Article  CAS  Google Scholar 

  • Torrent M, Musaev DG, Basch H, Morokuma K (2002) Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase. J Comput Chem 23(1):59–76

    Article  CAS  Google Scholar 

  • Ulf M, Krogsgaard-Larsen P, Liljefors T (2002) Textbook of drug design and discov. In., 3 edn. Washington, DC: Taylor & Francis, p 1–37

    Google Scholar 

  • van′t Riet B, Elford HL, Wampler GL (1993) Polyhydroxybenzoic acid derivatives US patent 5183828

    Google Scholar 

  • van′t Riet B, Wampler GL, Elford HL (1979a) Synthesis of hydroxy- and amino-substituted benzohydroxamic acids: inhibition of ribonucleotide reductase and antitumor activity. J Med Chem 22(5):589–592

    Google Scholar 

  • Van′t Riet B, Wampler GL, Elford HL (1979b) Synthesis of hydroxy-and amino-substituted benzohydroxamic acids: inhibition of ribonucleotide reductase and antitumor activity. J Med Chem 22(5):589–592

    Article  Google Scholar 

  • Veale D, Carmichael J, Cantwell B, Elford H, Blackie R, Kerr D, Kaye S, Harris A (1988) A phase 1 and pharmacokinetic study of didox: a ribonucleotide reductase inhibitor. Br J Cancer 58(1):70

    Article  CAS  Google Scholar 

  • Yadav R, Gupta S, Sharma P, Patil V (2011) Recent advances in studies on hydroxamates as matrix metalloproteinase inhibitors: a review. Curr Med Chem 18(11):1704–1722

    Article  CAS  Google Scholar 

  • Yang X, Liu G, Li H, Zhang Y, Song D, Li C, Wang R, Liu B, Liang W, Jing Y, Zhao G (2010) Novel oxadiazole analogues derived from ethacrynic acid: design, synthesis, and structure−activity relationships in inhibiting the activity of glutathione S-transferase P1–1 and cancer cell proliferation. J Med Chem 53(3):1015–1022

    Article  CAS  Google Scholar 

  • Young CW, Hodas S (1964) Hydroxyurea: inhibitory effect on DNA metabolism. Science 146(3648):1172–1174

    Article  CAS  Google Scholar 

  • Yun D, Saleh L, García-Serres R, Chicalese BM, An YH, Huynh BH, Bollinger Jr JM (2007) Addition of oxygen to the diiron (II/II) cluster is the slowest step in formation of the tyrosyl radical in the W103Y variant of ribonucleotide reductase protein R2 from mouse. Biochemistry 46(45):13067–13073

    Google Scholar 

  • Ziedan NI, Stefanelli F, Fogli S, Westwell AD (2010) Design, synthesis and pro-apoptotic antitumour properties of indole-based 3,5-disubstituted oxadiazoles. Eur J Med Chem 45(10):4523–4530

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are thankful to University Grants Commision, New Delhi, for the financial support. We are also thankful to Mrs. Nibha Mishra for her useful suggestions and proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Basu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basu, A., Sinha, B.N. (2013). Hydroxamates as Ribonucleotide Reductase Inhibitors. In: Gupta, S. (eds) Hydroxamic Acids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38111-9_6

Download citation

Publish with us

Policies and ethics