Skip to main content

Therapeutic Potential of Hydroxamic Acids for Microbial Diseases

  • Chapter
  • First Online:
Hydroxamic Acids

Abstract

Hydroxamic acid derivatives have recently been recommended for therapeutic treatment of several diseases, such as hypertension, cancer, as well as inflammations and infectious diseases due to their ability to chelate metals, especially in metalloenzymes. This chapter will focus on the role of metallopeptidases and their homologs in microbial diseases and the potential use of hydroxamates and their derivates for the treatment and control of such diseases. A general overview of the structure, synthesis, and inhibition mechanisms of hydroxamates as well as their potential use, including the advantages and relative problems, for medicinal chemistry will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAT:

Aminoglycoside acetyltransferases

AIDS:

Acquired immunodeficiency syndrome

ANTs:

Aminoglycoside nucleotidyltransferases

APH(3’)s:

Aminoglycoside 3′-phosphotransferases

BNZ:

Benznidazole

cART:

Combination antiretroviral therapy

DC:

Dendritic cells

ECM:

Extracellular matrix

Glu:

Glutamate

HDACs:

Histone deacetylases

HDACi:

Histone deacetylase inhibitors

HIV:

Human immunodeficiency virus

LmaCP1:

Leishmania major carboxypeptidase

LpxC:

UDP-3-O-(R-3-hydroxymyristol)-N-acetylglucosamine deacetylase

LPS:

Lipopolysaccharide

MCPs:

Metallocarboxypeptidases

MMPs:

Matrix metalloproteinases

MRSA:

Gram-positive methicillin-resistant Staphylococcus aureus

MVEC:

macrovascular endothelial cells

NFX:

Nifurtimox

6-PGDH:

6-Phosphogluconate dehydrogenase

TcMCP-t :

Trypanosoma cruzi metallocarboxypeptidase-type

Ex. Trypanosoma cruzi metallocarboxypeptidase-1

TIMPs:

Tissue inhibitors of metalloproteinases

TNF-α:

Tumor necrosis factor-alpha

WHO:

World Health Organization

ZBG:

Zinc-binding group

References

  • Aguiar AC, Rocha EM, Souza NB, França TC, Krettli AU (2012) New approaches in antimalarial drug discovery and development: a review. Mem Inst Oswaldo Cruz 107:831–845

    Article  CAS  Google Scholar 

  • Andrews KT, Tran TN, Wheatley NC, Fairlie DP (2009) Targeting histone deacetylase inhibitors for anti-malarial therapy. Curr Top Med Chem 9:292–308

    Article  CAS  Google Scholar 

  • Andrews KT, Tran TN, Fairlie DP (2012) Towards histone deacetylase inhibitors as new antimalarial drugs. Curr Pharm Des 18:3467–3479

    CAS  Google Scholar 

  • Barb AW, Jiang L, Raetz CR, Zhou P (2007) Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: Time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci U S A 104:18433–18438

    Article  CAS  Google Scholar 

  • Böhma S, Exner O (2003) Acidity of hydroxamic acids and amides. Org Biomol Chem 1:1176–1180

    Article  Google Scholar 

  • Brown MF, Reilly U, Abramite JA, Arcari JT, Oliver R, Barham RA, Che Y, Chen JM, Collantes EM, Chung SW, Desbonnet C, Doty J, Doroski M, Engtrakul JJ, Harris TM, Huband M, Knafels JD, Leach KL, Liu S, Marfat A, Marra A, McElroy E, Melnick M, Menard CA, Montgomery JI, Mullins L, Noe MC, O’Donnell J, Penzien J, Plummer MS, Price LM, Shanmugasundaram V, Thoma C, Uccello DP, Warmus JS, Wishka DG (2012) Potent inhibitors of LpxC for the treatment of Gram-negative infections. J Med Chem 55:914–923

    Article  CAS  Google Scholar 

  • Buache E, Garnotel R, Aubert D, Gillery P, Villena I (2007) Reduced secretion and expression of gelatinase profile in Toxoplasma gondii-infected human monocytic cells. Biochem Biophys Res Commun 359:298–303

    Article  CAS  Google Scholar 

  • Capaci-Rodrigues G, Aguair AP, Vianez-Júnior JLSG, Macrae A, Nogueira de Melo AC, Vermelho AB (2010) Peptidase Inhibitors as a possible therapeutic strategy for chagas disease. Curr Enz Inhib 6:183–194

    Article  Google Scholar 

  • Carafa V, Miceli M, Altucci L, Nebbioso A (2013) Histone deacetylase inhibitors: a patent review (2009–2011). Expert Opin Ther Pat 23:1–17

    Article  CAS  Google Scholar 

  • Castro MM, Rizzi E, Rodrigues GJ, Ceron CS, Bendhack LM, Gerlach RF, Tanus-Santos JE (2009) Antioxidant treatment reduces matrix metalloproteinase-2-induced vascular changes in renovascular hypertension. Free Radic Biol Med. 46:1298–1307

    Article  CAS  Google Scholar 

  • Codd R (2008) Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord Chem Rev 252:1387–1408

    Article  CAS  Google Scholar 

  • Costa JD, Nogueira de Melo AC, Vermelho AB, Meirelles Mde N, Porrozzi R (2008) In vitro evidence for metallopeptidase participation in hepatocyte damage induced by Leishmania chagasi-infected macrophages. Acta Trop 106:175–183

    Article  CAS  Google Scholar 

  • Deeks SG (2012) HIV: Shock and kill. Nature 487:439–440

    Article  CAS  Google Scholar 

  • Drugs for Neglected Diseases initiative (DNDi) - http://www.dndi.org/treatments/nect-c-treatments.html. Accessed in 29.11.2012***

  • Elhani D, Elhani I, Aouni M (2012) Resistance in gram negative bacteria: what is the current situation? Tunis Med 90:680–685

    Google Scholar 

  • Farkas E, Enyedy EA, Micera G, Garribba E (2000) Coordination modes of hydroxamic acids in copper(II), nickel(II) and zinc(II) mixed-ligand complexes in aqueous solution. Polyhedron 19:1727–1736

    Article  CAS  Google Scholar 

  • Fazary AE (2005) Thermodynamic studies on the protonation equilibria of some hydroxamic acids in NaNO3 solutions in water and in mixtures of water and dioxane. J Chem Eng. 50:888–895

    CAS  Google Scholar 

  • Floyd CD, Lewis CN, Patel SR, Whittaker M (1996) A method for the synthesis of hydroxamic acids on solid phase. Tetrahedron Lett 37:8045–8048

    Article  CAS  Google Scholar 

  • Frasch AP, Carmona AK, Juliano L, Cazzulo JJ, Niemirowicz GT (2012) Characterization of the M32 metallocarboxypeptidase of Trypanosoma brucei: differences and similarities with its orthologue in Trypanosoma cruzi. Mol Biochem Parasitol 184:63–70

    Article  CAS  Google Scholar 

  • Gennadios HA, Whittington DA, Li X, Fierke CA, Christianson DW (2006) Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase. Biochemistry 45:7940–7948

    Article  CAS  Google Scholar 

  • Geurts N, Opdenakker G, Van den Steen PE (2012) Matrix metalloproteinases as therapeutic targets in protozoan parasitic infections. Pharmacol Ther 133(3):257–279

    Article  CAS  Google Scholar 

  • Giacomelli G, Porcheddu A, Salaris M (2003) Simple one-flask method for the preparation of hydroxamic acids. Org Lett 5:2715–2717

    Article  CAS  Google Scholar 

  • Gomis-Rüth FX, Botelho TO, Bode W (2012) A standard orientation for metallopeptidases. Biochim Biophys Acta 1824:157–163

    Article  Google Scholar 

  • Gould IM, David MZ, Esposito S, Garau J, Lina G, Mazzei T, Peters G (2012) New insights into meticillin-resistant Staphylococcus aureus (MRSA) pathogenesis, treatment and resistance. Int J Antimicrob Agents 39:96–104

    Article  CAS  Google Scholar 

  • Goyer R, Golub M, Choudhury H, Hughes M, Kenyon E, Stifelman M (2004) U.S. Environmental Protection Agency. Issue paper on the human health effects of metals. pp 1–22

    Google Scholar 

  • Grigg R, Major JP, Martin FM, Whittaker M (1999) Solution and solid-phase synthesis of hydroxamic acids via palladium catalysed cascade reactions Original Research Article. Tetrahedron Lett 40:7709–7711

    Article  CAS  Google Scholar 

  • Gross J, Lapiere CM (1962) Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 48:1014–1022

    Article  CAS  Google Scholar 

  • Gutierrez FR, Lalu MM, Mariano FS, Milanezi CM, Cena J, Gerlach RF, Santos JE, Torres-Dueñas D, Cunha FQ, Schulz R, Silva JS (2008) Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J Infect Dis 197:1468–1476

    Article  CAS  Google Scholar 

  • Haddad J, Vakulenko S, Mobashery S (1999) An antibiotic cloaked by its own resistance enzyme. J Am Chem Soc 121:11922–11923

    Article  CAS  Google Scholar 

  • Hoekstra R, Eskens FA, Verweij J (2001) Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist 6:415–427

    Article  CAS  Google Scholar 

  • Hou T, Zhang W, Xu X (2012) Molecular docking studies of a group of hydroxamate inhibitors with gelatinase-A by molecular dynamics. J Comput Aided Mol Des 16:27–41

    Article  Google Scholar 

  • Jackman JE, Fierke CA, Tumey LN, Pirrung M, Uchiyama T, Tahir SH, Hindsgaul O, Raetz CR (2000) Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3-O-(r-3-hydroxymyristoyl)-n-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J Biol Chem 275:11002–11009

    Article  CAS  Google Scholar 

  • Klemba M, Goldberg DE (2002) Biological roles of proteases in parasitic protozoa. Annu Rev Biochem 71:275–305

    Article  CAS  Google Scholar 

  • Liang X, Lee CJ, Chen X, Chung HS, Zeng D, Raetz CR, Li Y, Zhou P, Toone EJ (2011) Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold. Bioorg Med Chem 19:852–860

    Article  CAS  Google Scholar 

  • Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41

    Article  CAS  Google Scholar 

  • Lopes AH, Souto-Padrón T, Dias FA, Gomes MT, Capaci-Rodrigues G, Zimmermann LT, Silva TLA, Vermelho AB (2010) Trypanosomatids: odd organisms, devastating diseases. Open Parasit J 4:30–59

    Article  CAS  Google Scholar 

  • Lu CY, Lai SC. (2012) Matrix metalloproteinase-2 and -9 lead to fibronectin degradation in astroglia infected with Toxoplasma gondii. Acta Trop (in Press)

    Google Scholar 

  • Luplertlop N, Missé D (2008) MMP cellular responses to dengue virus infection-induced vascular leakage. Jpn J Infect Dis 61:298–301

    CAS  Google Scholar 

  • Malafaia G, Marcon LN, Pereira LF, Pedrosa ML, Rezende AS (2011) Leishmania chagasi: effect of the iron deficiency on the infection in BALB/c mice. Exp Parasitol 127:719–723

    Article  CAS  Google Scholar 

  • Marson BP, Poli de Figueiredo CE, Tanus-Santos JE (2012) Imbalanced matrix metalloproteinases in cardiovascular complications of end-stage kidney disease: a potential pharmacological target. Basic Clin Pharmacol Toxicol 110:409–415

    Article  CAS  Google Scholar 

  • McGwire BS, Chang KP, Engman DM (2003) Migration through the extracellular matrix by the parasitic protozoan Leishmania is enhanced by surface metalloprotease gp63. Infect Immun 71:1008–1010

    Article  CAS  Google Scholar 

  • McKerrow JH (1987) Human fibroblast collagenase contains an amino acid sequence homologous to the zinc-binding site of Serratia protease. J Biol Chem 262:5943

    CAS  Google Scholar 

  • McKerrow JH, Rosenthal PJ, Swenerton R, Doyle P (2008) Development of protease inhibitors for protozoan infections. Curr Opin Infect Dis 21:668–672

    Article  CAS  Google Scholar 

  • Mdluli KE, Witte PR, Kline T, Barb AW, Erwin AL, Mansfield BE, McClerren AL, Pirrung MC, Tumey LN, Warrener P, Raetz CR, Stover CK (2006) Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:2178–2184

    Article  CAS  Google Scholar 

  • Muri EM, Nieto MJ, Sindelar RD, Williamson JS (2002) Hydroxamic acids as pharmacological agents. Curr Med Chem 9:1631–1653

    Article  CAS  Google Scholar 

  • Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233

    Article  CAS  Google Scholar 

  • Nandurkar NS, Petersen R, Qvortrup K, Komnatnyy VV, Taveras KM, Le Quement ST, Frauenlob R, Givskov M, Nielsen TE (2011) A convenient procedure for the solid-phase synthesis of hydroxamic acids on PEGA resins. Tetrahedron Lett 52:7121–7124

    Article  CAS  Google Scholar 

  • Nogueira de Melo AC, Meirelles MNL, Porrozzi R, Costa JD, Branquinha MH, Vermelho AB (2004) Reduced activity of matrix metalloproteinase-9 in Trypanosoma cruzi-infected mouse embryo hepatocyte cell. Hepatol Res 28:49–56

    Article  CAS  Google Scholar 

  • Nogueira de Melo AC, de Souza EP, Elias CG, dos Santos AL, Branquinha MH, d’Avila-Levy CM, dos Reis FC, Costa TF, Lima AP, de Souza Pereira MC, Meirelles MN, Vermelho AB (2010) Detection of matrix metallopeptidase-9-like proteins in Trypanosoma cruzi. Exp Parasitol 125:256–263

    Article  CAS  Google Scholar 

  • Onishi HR, Pelak BA, Gerckens LS, Silver LL, Kahan FM, Chen MH, Patchett AA, Galloway SM, Hyland SA, Anderson MS, Raetz CRH (1996) Antibacterial agents that inhibit Lipid A biosynthesis. Science 274:980–982

    Article  CAS  Google Scholar 

  • Palatnik-de-Sousa CB (2012) Vaccines for canine leishmaniasis. Front Immunol 3:69

    Google Scholar 

  • Pepeljnjak S, Zorc B, Butula I (2005) Antimicrobial activity of some hydroxamic acids. Acta Pharm 55:401–408

    CAS  Google Scholar 

  • Prato M, Giribaldi G (2011) Matrix Metalloproteinase-9 and Haemozoin: Wedding Rings for Human Host and Plasmodium falciparum Parasite in Complicated Malaria. J Trop Med 2011:628435

    Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  Google Scholar 

  • Rawlings ND, Barrett AJ, Bateman A (2012) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 40:D343–D350

    Article  CAS  Google Scholar 

  • Riedel S, Kaupp M (2009) The highest oxidation states of the transition metal elements. Coord Chem Rev 253:606–624

    Article  CAS  Google Scholar 

  • Ruda GF, Wong PE, Alibu VP, Norval S, Read KD, Barrett MP, Gilbert IH (2010) Aryl phosphoramidates of 5-phospho erythronohydroxamic acid, a new class of potent trypanocidal compounds. J Med Chem 53:6071–6078

    Article  CAS  Google Scholar 

  • Sakurai A, Okahashi N, Maruyama F, Ooshima T, Hamada S, Nakagawa I (2008) Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13. Biochem Biophys Res Commun 373:450–454

    Article  CAS  Google Scholar 

  • Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162

    Article  CAS  Google Scholar 

  • Shin H, Gennadios HA, Whittington DA, Christianson DW (2007) Amphipathic benzoic acid derivatives: synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC. Bioorg Med Chem 15:2617–2623

    Article  CAS  Google Scholar 

  • Sibi MP, Hasegawa H, Ghorpade SR (2002) A convenient method for the conversion of N-acyloxazolidinones to hydroxamic acids. Org Lett 4:3343–3346

    Article  CAS  Google Scholar 

  • Van den Steen PE, Van Aelst I, Starckx S, Maskos K, Opdenakker G, Pagenstecher A (2006) Matrix metalloproteinases, tissue inhibitors of MMPs and TACE in experimental cerebral malaria. Lab Invest 86:873–888

    Article  Google Scholar 

  • Vargová V, Pytliak M, Mechírová V (2012) Matrix metalloproteinases. EXS 103:1–33

    Google Scholar 

  • Vendrell J, Querol E, Avilés FX (2000) Metallocarboxypeptidases and their protein inhibitors. Structure, function and biomedical properties. Biochim Biophys Acta 1477:284–298

    Article  CAS  Google Scholar 

  • Vermelho AB, Branquinha MH, d’Ávila-Levy CM, Santos ALS, Dias EPS, Noguera de Melo AM (2010) Biological roles of peptidases in trypanosomatids. The Open Parasitol J 4:5–23

    Google Scholar 

  • Warmus JS, Quinn CL, Taylor C, Murphy ST, Johnson TA, Limberakis C, Ortwine D, Bronstein J, Pagano P, Knafels JD, Lightle S, Mochalkin I, Brideau R, Podoll T (2012) Structure based design of an in vivo active hydroxamic acid inhibitor of P. aeruginosa LpxC. Bioorg Med Chem Lett 22:2536–2543

    Article  CAS  Google Scholar 

  • Whittaker M, Floyd CD, Brown P, Gearing AJ (1999) Design and therapeutic application of matrix metalloproteinase inhibitors. Chem Rev 99:2735–2776

    Article  CAS  Google Scholar 

  • Wightman F, Ellenberg P, Churchill M, Lewin SR (2012) HDAC inhibitors in HIV. Immunol Cell Biol 90:47–54

    Article  CAS  Google Scholar 

  • Wojtowicz-Praga SM, Dickson RB, Hawkins MJ (1997) Matrix metalloproteinase inhibitors. Invest New Drugs 15:61–75

    Article  CAS  Google Scholar 

  • World Health Organization–WHO (2012a) http://www.who.int/hiv/data/2012_epi_core_en.png. Accessed 29 Nov 2012

  • World Health Organization–WHO (2012b) http://www.who.int/leishmaniasis/resources/leishmaniasis_epidemiology_access_to_medicine/en/index.html. Accessed 29 Nov 2012

  • World Health Organization–WHO (2012c) http://www.who.int/neglected_diseases/diseases/chagas/en/index.html. Accessed in 30.11.2012

  • World Health Organization–WHO (2012d) http://www.who.int/tdr/research/ntd/en/ Accessed 29 Nov 2012

  • Wu JW, Chen XL (2011) Extracellular metalloproteases from bacteria. Appl Microbiol Biotechnol 92:253–262

    Article  CAS  Google Scholar 

  • Yuan X, Mitchell BM, Wilhelmus KR (2009) Expression of matrix metalloproteinases during experimental Candida albicans keratitis. Invest Ophthalmol Vis Sci 50:737–742

    Article  Google Scholar 

  • Zhai W, Gerritz SW, Sofia MJ (2012) Solid phase synthesis of 1,5-disubstituted pyrazole-4-hydroxamic acids and pyrazole-4-carboxamides via direct amidation of β-ketoesters. Tetrahedron Lett 53:267–270

    Article  CAS  Google Scholar 

  • Zhang X, Gonnella NC, Koehn J, Pathak N, Ganu V, Melton R, Parker D, Hu SI, Nam KY (2000) Solution structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent non-peptidic sulfonamide inhibitor: binding comparison with stromelysin-1 and collagenase-1. J Mol Biol 301:513–524

    Article  CAS  Google Scholar 

  • Zhang J, Zhang L, Li X, Xu W (2012) UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) inhibitors: a new class of antibacterial agents. Curr Med Chem 19:2038–2050

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (MCT/CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alane Beatriz Vermelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rodrigues, G.C., de Souza, F.A.G., Lin, W.O., Vermelho, A.B. (2013). Therapeutic Potential of Hydroxamic Acids for Microbial Diseases. In: Gupta, S. (eds) Hydroxamic Acids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38111-9_10

Download citation

Publish with us

Policies and ethics