Advertisement

Visualization of Organ Motion during Breathing from 4D Datasets

  • Markus Müller
  • Athanasios Karamalis
  • Nassir Navab
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7815)

Abstract

The introduction of 3D + t medical datasets is posing new challenges to visualization. Volumetric and flow visualization are established fields offering a wide spectrum of techniques for visualizing 3D + t datasets. In this work we address the problem of visualizing the motion of organs during breathing. As opposed to flow visualization we are not directly interested in the underlying flow, but in the deformation caused by the flow. Therefore, visualization of breathing motion focuses on emphasizing the organ motion while preserving the anatomical context provided by the volumetric visualization. In this work we will discuss methods from flow and volume visualization, their applications, and introduce alternative visualization approaches for enhancing the perception of organ motion due to breathing.

Keywords

4D Visualization Volume Rendering Flow Visualization Deformation Breathing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: IEEE 11th International Conference on Computer Vision, ICCV, pp. 1–8. IEEE (2007)Google Scholar
  2. 2.
    Delhay, B., Clarysse, P., Pera, C., Magnin, I.E.: A spatio-temporal deformation model for dense motion estimation in periodic cardiac image sequences. In: Statistical Atlases to Personalized Models: Understanding Complex Diseases in Populations and Individuals, Satellite Workshop MICCAI 2006, pp. 87–90 (2006)Google Scholar
  3. 3.
    Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, C.: Real-time volume graphics. AK Peters Ltd. (2006)Google Scholar
  4. 4.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)CrossRefGoogle Scholar
  5. 5.
    Glocker, B., Sotiras, A., Komodakis, N., Paragios, N.: Deformable medical image registration: Setting the state of the art with discrete methods. Annual Review of Biomedical Engineering 13, 219–244 (2011)CrossRefGoogle Scholar
  6. 6.
    Grady, L.: Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI) 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  7. 7.
    Handels, H., Werner, R., Schmidt, R., Frenzel, T., Lu, W., Low, D., Ehrhardt, J.: 4D medical image computing and visualization of lung tumor mobility in spatio-temporal CT image data. International Journal of Medical Informatics 76, S433–S439 (2007)Google Scholar
  8. 8.
    Honigmann, D., Ruisz, J., Haider, C.: Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data. In: Proceedings of the 14th IEEE Visualization 2003, VIS 2003, pp. 489–496 (2003)Google Scholar
  9. 9.
    Johnson, C.: Top scientific visualization research problems. IEEE Computer Graphics and Applications 24, 13–17 (2004)CrossRefGoogle Scholar
  10. 10.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: elastix: A toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  11. 11.
    Kosara, R., Healey, C.G., Interrante, V., Laidlaw, D.H., Ware, C.: Thoughts on user studies: Why, how, and when. IEEE Computer Graphics and Applications 23(4), 20–25 (2003)CrossRefGoogle Scholar
  12. 12.
    Krüger, J., Westermann, R.: Acceleration techniques for GPU-based volume rendering. In: Proceedings of the 14th IEEE Visualization Conference, pp. 287–292 (2003)Google Scholar
  13. 13.
    Laramee, R.S., Hauser, H., Doleisch, H., Vrolijk, B., Post, F.H., Weiskopf, D.: The state of the art in flow visualization: Dense and texture-based techniques. Computer Graphics Forum 22(2), 203–221 (2004)CrossRefGoogle Scholar
  14. 14.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: Feature extraction and visualization of flow fields. Eurographics 2002 State-of-the-Art Reports 1, 69–100 (2002)Google Scholar
  15. 15.
    Prckovska, V., Peeters, T., van Almsick, M., Romeny, B., Vilanova i Bartroli, A.: Fused DTI/HARDI visualization. IEEE Transactions on Visualization and Computer Graphics 17, 1407–1419 (2011)CrossRefGoogle Scholar
  16. 16.
    Sarrut, D., Boldea, V., Miguet, S., Ginestet, C.: Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. Med. Phys. 33(3), 605–617 (2006)CrossRefGoogle Scholar
  17. 17.
    Vandemeulebroucke, J., Sarrut, D., Clarysse, P.: The POPI-model, a point-validated pixel-based breathing thorax model. In: International Conference on the Use of Computers in Radiation Therapy (2007)Google Scholar
  18. 18.
    Yigitsoy, C., Rijkhorst, E., Navab, N., Wachinger, C.: Manifold learning for image-based breathing gating in ultrasound and MRI. Medical Image Analysis 16(4), 806–818 (2012)CrossRefGoogle Scholar
  19. 19.
    Yigitsoy, M., Wachinger, C., Navab, N.: Temporal groupwise registration for motion modeling. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 648–659. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Markus Müller
    • 1
  • Athanasios Karamalis
    • 1
  • Nassir Navab
    • 1
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenGermany

Personalised recommendations