Modeling of Radiofrequency Ablation Lesions for Image-Guided Arrhythmia Therapy: A Preliminary ex vivo Demonstration

  • Cristian A. Linte
  • Jon J. Camp
  • David R. HolmesIII
  • Maryam E. Rettmann
  • Richard A. Robb
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7815)


In spite of significant efforts to enhance guidance for catheter navigation, very little has been done to consider the changes that occur in the tissue during ablation as a means to provide feedback on therapy delivery. We propose a technique to visualize the lesion progression and monitor the RF energy delivery by means of a real-time thermal ablation model. The model is based on physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution and geometry of the generated lesion in real time. Validation of the model against experimental measurements recorded in ex vivo muscle samples ablated under clinically relevant conditions demonstrated good agreement between the predicted and measured parameters. We believe this technique will enable the generation of real-time thermal maps that can be used to guide the placement of successive lesions to ensure continuous and effective suppression of the arrhythmic pathway.


Ablation Procedure Ablation Lesion Catheter Navigation Maximum Power Level Circumferential Pulmonary Vein Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaauw, Y., Crijns, H.J.: Atrial fibrillation: insights from clinical trials and novel treatment options. J. Intern. Med. 262, 593–614 (2007)CrossRefGoogle Scholar
  2. 2.
    Pappone, C., et al.: Circumferential radiofrequency ablation of pulmonary vein ostia: A new anatomic approach for curing atrial fibrillation. Circulation 102, 2619–2628 (2000)CrossRefGoogle Scholar
  3. 3.
    Oral, H., Pappone, C., et al.: Circumferential pulmonary vein ablation for chronic atrial fibrillation. N. Engl. J. Med. 354, 934–941 (2006)CrossRefGoogle Scholar
  4. 4.
    Sra, J., Krum, D., et al.: Registration of 3D left atrial CT images with fluoroscopy. Heart Rhythm 2, 1020–1022 (2000)CrossRefGoogle Scholar
  5. 5.
    Knecht, S., Skali, H., et al.: CT-fluoroscopy overlay evaluation during catheter ablation of left atrial arrhythmia. Europace 10, 931–938 (2008)CrossRefGoogle Scholar
  6. 6.
    Dickfeld, T., Calkins, H., et al.: Stereotactic catheter navigation using magnetic resonance image integration in the human heart. Heart Rhythm 2, 413–415 (2005)CrossRefGoogle Scholar
  7. 7.
    Rettmann, M.E., Holmes III, D.R., Cameron, B.M., Robb, R.A.: An event-driven distributed processing architecture for image-guided cardiac ablation therapy. Comput. Methods Programs Biomed. 95, 95–104 (2009)CrossRefGoogle Scholar
  8. 8.
    Linte, C.A., Lang, P., Rettmann, M.E., Cho, D.S., Holmes III, D.R., Robb, R.A., Peters, T.M.: Accuracy considerations in image-guided cardiac interventions: experience and lessons learned. Int. J. Comput. Assist. Radiol. Surg. 7, 13–25 (2011)CrossRefGoogle Scholar
  9. 9.
    Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 85, 5–34 (1998)Google Scholar
  10. 10.
    Duck, F.: Physical Properties of Tissues: A Comprehensive Reference Book, pp. 167–223. Academic Press, New York (1990)Google Scholar
  11. 11.
    Tungjitkusolmun, S., Staelin, S.T., et al.: 3D finite element analyses for RF hepatic tumor ablation. IEEE Trans. Biomed. Eng. 49, 3–9 (2002)CrossRefGoogle Scholar
  12. 12.
    Chang, I.A., Nguyen, U.D.: Thermal modeling of lesion growth with RF ablation devices. Biomed. Eng. Online 3, 1–19 (2004)CrossRefGoogle Scholar
  13. 13.
    Knowles, B.R., Caulfield, D., et al.: 3-D visualization of acute RF ablation lesions using mri for the simultaneous determination of the patterns of necrosis and edema. IEEE Trans. Biomed Eng. 57, 1467–1475 (2010)CrossRefGoogle Scholar
  14. 14.
    Chan, R., Packer, D.: Accuracy of ICE measurement of RF ablation lesion dimensions in the intact canine atrium and ventricle. Circulation 92, I–794 (1995)Google Scholar
  15. 15.
    Rieder, C., Kroger, T., Schumann, C., Hahn, H.K.: GPU-based real-time approximation of the ablation zone for radiofrequency ablation. IEEE Trans. Vis Comput. Graph. 17, 1812–1821 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cristian A. Linte
    • 1
  • Jon J. Camp
    • 1
  • David R. HolmesIII
    • 1
  • Maryam E. Rettmann
    • 1
  • Richard A. Robb
    • 1
  1. 1.Biomedical Imaging ResourceMayo ClinicRochesterUSA

Personalised recommendations