Advertisement

Interactive OCT Annotation and Visualization for Vitreoretinal Surgery

  • Marcin Balicki
  • Rogerio Richa
  • Balazs Vagvolgyi
  • Peter Kazanzides
  • Peter Gehlbach
  • James Handa
  • Jin Kang
  • Russell Taylor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7815)

Abstract

Vitreoretinal surgery is an extremely challenging surgical discipline requiring surgeons to use limited visualization to locate and safely operate on particularly delicate eye structures. Intraocular image guidance can potentially aid in localizing retinal targets, such as Epiretinal Membranes. This paper describes a system and methods for localizing difficult to identify anatomical features in the retina using video stereo-microscopy and intraocular OCT. We visually track the retina motion and relative position of a hand-held OCT probe to assemble an M-Scan, the cross-sectional image of the anatomy corresponding to a trajectory of the probe across the retina. The surgeon is then able to interrogate the OCT image during the procedure by pointing a surgical instrument at the M-Scan trajectory superimposed on the retina and displayed in 3D. The system is designed to provide relevant intraoperative imaging to increase surgical precision, and minimize the surgeon’s cognitive load. We describe our system and quantify its performance in a phantom eye.

Keywords

vitreoretinal surgery image guided interventions stereo microscopy anatomical annotations visualization OCT smart instruments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilkins, J.R., Puliafito, C.A., Hee, M.R., Duker, J.S., Reichel, E., Coker, J.G., Schuman, J.S., Swanson, E.A., Fujimoto, J.G.: Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103(12), 2142–2151 (1996)Google Scholar
  2. 2.
    Hirano, Y., Yasukawa, T., Ogura, Y.: Optical coherence tomography guided peeling of macular epiretinal membrane. Clinical Ophthalmology 5, 27–29 (2011)Google Scholar
  3. 3.
    Ehlers, J.P., Tao, Y.K., Farsiu, S., Maldonado, R., Izatt, J.A., Toth, C.A.: Integration of a Spectral Domain Optical Coherence Tomography System into a Surgical Microscope for Intraoperative Imaging. IOVS 52, 3153–3159 (2011)Google Scholar
  4. 4.
    Fleming, I.N., Voros, S., Vagvolgyi, B., Pezzementi, Z., Handa, J., Taylor, R., Hager, G.D.: Intraoperative Visualization of Anatomical Targets in Retinal Surgery. In: IEEE Workshop on Applications of Computer Vision, WAC 2008, pp. 1–6 (2008)Google Scholar
  5. 5.
    Han, S., Sarunic, M.V., Wu, J., Humayun, M., Yang, C.: Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection. J. Biomed. Opt. 13(2), 020505 (2008)Google Scholar
  6. 6.
    Balicki, M., Han, J.-H., Iordachita, I., Gehlbach, P., Handa, J., Taylor, R., Kang, J.: Single Fiber Optical Coherence Tomography Microsurgical Instruments for Computer and Robot-Assisted Retinal Surgery. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 108–115. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Mountney, P., Giannarou, S., Elson, D., Yang, G.-Z.: Optical Biopsy Mapping for Minimally Invasive Cancer Screening. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 483–490. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Yamamoto, T., Vagvolgyi, B., Balaji, K., Whitcomb, L.L., Okamura, A.M.: Tissue property estimation and graphical display for teleoperated robot-assisted surgery. In: ICRA 2009, pp. 4239–4245 (2009)Google Scholar
  9. 9.
    Atasoy, S., Mateus, D., Meining, A., Yang, G.Z., Navab, N.: Endoscopic Video Manifolds for Targeted Optical Biopsy. IEEE Transactions on Medical Imaging (November 2011)Google Scholar
  10. 10.
    cisst-saw software library: https://trac.lcsr.jhu.edu/cisst
  11. 11.
    Liu, X., Balicki, M., Taylor, R.H., Kang, J.U.: Towards automatic calibration of Fourier-Domain for robot-assisted vitreoretinal surgery. Opt. Express 18, 24331–24343 (2010)CrossRefGoogle Scholar
  12. 12.
    Liu, X., Kang, J.U.: Progress toward inexpensive endoscopic high-resolution common-path OCT. In: Proc. SPIE, vol. 7559, p. 755902 (2010)Google Scholar
  13. 13.
    Richa, R., Balicki, M., Meisner, E., Sznitman, R., Taylor, R., Hager, G.: Visual Tracking of Surgical Tools for Proximity Detection in Retinal Surgery. In: Taylor, R.H., Yang, G.-Z. (eds.) IPCAI 2011. LNCS, vol. 6689, pp. 55–66. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Berger, J.W., Madjarov, B.: Augmented Reality Fundus Biomicroscopy. Arch. Ophthalmol. 119 (December 2001)Google Scholar
  15. 15.
    Riviere, C.N., Jensen, P.S.: A study of instrument motion in retinal microsurgery. In: Proc. Int. Conf. IEEE Engineering in Medicine and Biology Society, pp. 59–60 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcin Balicki
    • 1
  • Rogerio Richa
    • 1
  • Balazs Vagvolgyi
    • 1
  • Peter Kazanzides
    • 1
  • Peter Gehlbach
    • 2
  • James Handa
    • 2
  • Jin Kang
    • 1
  • Russell Taylor
    • 1
  1. 1.ERC for Computer Integrated SurgeryJohns Hopkins UniversityUSA
  2. 2.Wilmer Eye InstituteJohns Hopkins MedicalBaltimoreUSA

Personalised recommendations