Augmented 3-D View for Laparoscopy Surgery

  • Brahim Tamadazte
  • Sandrine Voros
  • Christophe Boschet
  • Philippe Cinquin
  • Céline Fouard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7815)


Minimally invasive surgery became popular as it benefits the patient, reducing pain and allowing better recovery. However, during endoscopy, surgeons face significant technical challenges such as indirect 2-D visualization, restricted field-of-view, lack of brightness, insufficient depth-of-field, distortions, etc. In this paper, we propose a new vision system for laparoscopy. This system consists of two pairs of cameras in stereoscopic conditions directly inserted into the patient through a single standard 10 millimeters diameter trocar and be deployed and fixed into the patient’s abdominal cavity. It answers several problems raised by standard endoscopic systems as well as a 3-D virtual environment.


multiple views vision system CMOS cameras laparoscopy surgery 3-D visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumhauer, M., Simpfendoerfer, T., Schwarz, R., Seitel, M., Muller-Stich, B.P., Gutt, C.N., Rassweiler, J., Meinzer, H.-P., Wolf, I.: Soft tissue navigation for laparoscopic prostatectomy: Evaluation of camera pose estimation for enhanced visualization. In: Medical Imaging 2007: Visualization and Image-Guided Procedures, vol. 6509(1) (2007)Google Scholar
  2. 2.
    Faugeras, O.: Three-dimensional computer vision: a geometric viewpoint. MIT Press, Cambridge (1993)Google Scholar
  3. 3.
    Feuerstein, M., Mussack, T., Heinning, S.M., Navab, N.: Registration-free laparoscope augmentation for intra-operative liver resection planning. Progress in Biomedical Optics and Imaging 8(1), 28 (2007)Google Scholar
  4. 4.
    Fowler, D.L., Hu, T., Nadkarni, T., Allen, P.K., Hogle, N.J.: Initial trial of a stereoscopic, insertable, remotely controlled camera for minimal access surgery. Surgical Endoscopy 24(1), 9–15 (2010)CrossRefGoogle Scholar
  5. 5.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Conference, Manchester, pp. 147–151 (1988)Google Scholar
  6. 6.
    Karagozler, M.E., Cheung, E., Kwon, J., Sitti, M.: Miniature endoscopic capsule robot using biomimetic micro-patterned adhesives. In: The First IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, pp. 105–111 (February 2006)Google Scholar
  7. 7.
    Lerotic, M., Chung, A.J., Mylonas, G.P., Yang, G.Z.: pq-space based non-photorealistic rendering for augmented reality. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 102–109. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-specular separation and depth recovery from image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part III. LNCS, vol. 2352, pp. 210–224. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Makhoul, B., De La Taille, A., Vordos, D., Salomon, L., Sebe, P., Audet, J., Ruiz, L., Hoznek, A., Antiphon, P., Cicco, A., Yiou, R., Chopin, D., Abbou, C.: Laparoscopic radical nephrectomy for t1 renal cancer: The gold standard? A comparison of laparoscopic vs open nephrectomy. BJU Int. 93(1), 67–70 (2004)CrossRefGoogle Scholar
  10. 10.
    Mylonas, G.P., Kwok, K.-W., Darzi, A., Yang, G.-Z.: Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 676–683. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Robb, R.A., Cameron, B.M., Aharon, S.: Efficient shape-based algorithms for modeling patient specific anatomy from 3d medical images: applications in virtual endoscopy and surgery. In: Proceedings of the 1997 International Conference on Shape Modeling and Applications, pp. 97–108, 245–246 (March 1997)Google Scholar
  12. 12.
    Salvi, J., Pagès, J., Batlle, J.: Pattern codification strategies in structured light systems. Pattern Recognition 37(4), 827–849 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Wolf, R., Duchateau, J., Cinquin, P., Voros, S.: 3D tracking of laparoscopic instruments using statistical and geometric modeling. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 203–210. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Wu, C.-H., Sun, Y.-N., Chang, C.-C.: Three-dimensional modeling from endoscopic video using geometric constraints via feature positioning. IEEE Transactions on Biomedical Engineering 54(7), 1199–1211 (2007)CrossRefGoogle Scholar
  15. 15.
    Xie, T., Guo, S., Chen, Z., Mukai, D., Brenner, M.: Grin lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking. Optics Express 14, 3238–3246 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Brahim Tamadazte
    • 1
  • Sandrine Voros
    • 1
  • Christophe Boschet
    • 1
  • Philippe Cinquin
    • 1
  • Céline Fouard
    • 1
  1. 1.UMR 5525 UJF CNRS, GMCAO Team, Faculty of MedicineTIMC-IMAG LaboratoryLa Tronche CedexFrance

Personalised recommendations