Traceable Particle Swarm Optimization for Electromagnetically Navigated Bronchoscopy

  • Xiongbiao Luo
  • Takayuki Kitasaka
  • Kensaku Mori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7815)


This paper proposes a modified evolutionary algorithm called traceable particle swarm optimization (PSO) that boosts bronchoscope motion tracking during electromagnetically navigated bronchoscopy. Since electromagnetic (EM) tracking is usually deteriorated by uncertainties (e.g., patient respiratory motion or magnetic field distortion) that occur in interventions, we develop a traceable PSO framework by integrating EM sensor measurements and image intensity information into the standard PSO method. In particular, all evolutionary parameters in our PSO framework can be updated traceably or adaptively in accordance with spatial distance constraints and image similarity information, resulting in an advantageous performance in dynamic bronchoscope motion estimation. Experimental results based on dynamic phantom validation demonstrate that our proposed tracking scheme provides a more robust, accurate, and efficient approach for endoscope motion tracking than several current available methods. The average tracking accuracy of position and orientation was improved from (4.3 mm, 7.8°) to (3.3 mm, 6.5°) and the computational time was reduced from 1.0 to 0.8 seconds per frame without any acceleration devices or code optimization strategy.


Bronchoscope Motion Tracking Electromagnetic Tracking Particle Swarm Optimization Electromagnetically Navigated Bronchoscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deligianni, F., Chung, A.J., Yang, G.Z.: Nonrigid 2-D/3-D registration for patient specific bronchoscopy simulation with statistical shape modeling: Phantom validation. IEEE TMI 25(11), 1462–1471 (2006)Google Scholar
  2. 2.
    Helferty, J.P., Sherbondy, A.J., Kiraly, A.P., Higgins, W.E.: Computer-based system for the virtual-endoscopic guidance of bronchoscopy. CVIU 108(1-2), 171–187 (2007)Google Scholar
  3. 3.
    Deguchi, D., Mori, K., Feuerstein, M., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Selective image similarity measure for bronchoscope tracking based on image registration. MedIA 13(4), 621–633 (2009)Google Scholar
  4. 4.
    Mori, K., Deguchi, D., Akiyama, K., Kitasaka, T., Maurer Jr., C.R., Suenaga, Y., Takabatake, H., Mori, M., Natori, H.: Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005, Part II. LNCS, vol. 3750, pp. 543–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Reichl, T., Luo, X., Menzel, M., Hautmann, H., Mori, K., Navab, N.: Deformable registration of bronchoscopic video sequences to CT volumes with guaranteed smooth output. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 17–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gergel, I., dos Santos, T.R., Tetzlaff, R., Maier-Hein, L., Meinzer, H.-P., Wegner, I.: Particle filtering for respiratory motion compensation during navigated bronchoscopy. In: Wong, K.H., Miga, M.I. (eds.) SPIE Medical Imaging 2010, California, USA, vol. 7625, p. 76250W (2010)Google Scholar
  7. 7.
    Soper, T.D., Haynor, D.R., Glenny, R.W., Seibel, E.J.: In vivo validation of a hybrid tracking system for navigation of an ultrathin bronchoscope within peripheral airways. IEEE TBME 57(3), 736–745 (2010)Google Scholar
  8. 8.
    Luó, X., Reichl, T., Feuerstein, M., Kitasaka, T., Mori, K.: Modified hybrid bronchoscope tracking based on sequential monte carlo sampler: Dynamic phantom validation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 409–421. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Luo, X., Kitasaka, T., Mori, K.: Bronchoscopy navigation beyond electromagnetic tracking systems: A novel bronchoscope tracking prototype. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 194–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. IEEE International Conf. on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  11. 11.
    Zhang, X., Hu, W., Qu, W., Maybank, S.: Multiple object tracking via species-based particle swarm optimization. IEEE TCSVT 20(11), 1590–1602 (2010)Google Scholar
  12. 12.
    John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical particle swarm optimisation. IVC 28(11), 1530–1547 (2010)CrossRefGoogle Scholar
  13. 13.
    Zhang, L., Mei, T., Liu, Y., Tao, D., Zhou, H.-Q.: Visual search reranking via adaptive particle swarm optimization. Pattern Recognition 44(8), 1811–1820 (2011)CrossRefGoogle Scholar
  14. 14.
    Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE TEC 10(4), 440–458 (2006)Google Scholar
  15. 15.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE TEC 6(1), 58–73 (2002)Google Scholar
  16. 16.
    Schwarz, Y., Greif, J., Becker, H.D., Ernst, A., Mehta, A.: Real-time electromagnetic navigation bronchoscopy to peripheral lung lesions using overlaid CT images: the first human study. Chest 129(4), 988–994 (2006)CrossRefGoogle Scholar
  17. 17.
    Luo, X., Feuerstein, M., Imaizumi, K., Hasegawa, Y., Mori, K.: Towards hybrid bronchoscope tracking under respiratory motion: evaluation on a dynamic motion phantom. In: Wong, K.H., Miga, M.I. (eds.) SPIE Medical Imaging 2010, California USA, vol. 7625, p. 76250B (2010)Google Scholar
  18. 18.
    Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for nonlinear/non-gaussian Bayesian tracking. IEEE TSP 50(2), 174–188 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiongbiao Luo
    • 1
  • Takayuki Kitasaka
    • 2
  • Kensaku Mori
    • 1
    • 3
  1. 1.Information and Communications HeadquartersNagoya UniversityJapan
  2. 2.Faculty of Information ScienceAichi Institute of TechnologyJapan
  3. 3.Graduate School of Information ScienceNagoya UniversityJapan

Personalised recommendations