Skip to main content

Fruit Processing Byproducts as a Source of Natural Antifungal Compounds

  • Chapter
  • First Online:
Antifungal Metabolites from Plants

Abstract

Nowadays, there has been an increasing concern of consumers on foods free or with lower levels of synthetic chemical preservatives, because they could be toxic for humans and the environment. Concomitantly, consumers have also demanded foods with long shelf life and fruit producers and processors must deal with the perishable character of its products and the large percentage of byproducts, such as peels, seeds, and unused flesh that are generated by different steps of the industrial process. It has been reported that the wasted byproducts present high contents of antifungal compounds, providing a potential alternative to protect foods or feeds from fungal contamination. The aim of this chapter is to highlight the importance of the integral exploitation of the fruit byproducts, analyzing the current state of the situation. Additionally, the chapter reviews the most recent investigations on bioactive compounds with antifungal properties extracted from fruit residuals and their possible utilization as antimicrobials not only for the food but also for the cosmetic and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad MJ, Ansuategui M, Bermejo P (2007) Active antifungal substances from natural sources. Arkivoc 7:116–145

    Google Scholar 

  • Ajila C, Bhat S, Prasada Rao U (2007) Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem 102(4):1006–1011

    Article  CAS  Google Scholar 

  • Alma MH, Nitz S, Kollmannsberger H, Digrak M, Efe FT, Yilmaz N (2004) Chemical composition and antimicrobial activity of the essential oils from the gum of Turkish pistachio (Pistacia vera L.). J Agric Food Chem 52(12):3911–3914

    Article  PubMed  CAS  Google Scholar 

  • Alonso ÁM, Guillén DA, Barroso CG, Puertas B, García A (2002) Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J Agric Food Chem 50(21):5832–5836

    Article  PubMed  CAS  Google Scholar 

  • Amro B, Aburjai T, Al-Khalil S (2002) Antioxidative and radical scavenging effects of olive cake extract. Fitoterapia 73(6):456–461

    Article  PubMed  CAS  Google Scholar 

  • Andrews DA, Andrews K (2008) Nutraceutical moringa composition. Google patents Appl. no.: 12/338,789, Pub. no.: US 2009/0098230 A1, Pub, 18 Dec 2008

    Google Scholar 

  • Ayala-Zavala JF, González-Aguilar GA (2011) Use of additives to preserve the quality of fresh-cut fruits and vegetables. In: Martín-Belloso O, Soliva-Fortuny R (eds) Advances in fresh-cut fruits and vegetables processing. CRC Press, Boca Raton, pp 231–254

    Google Scholar 

  • Ayala-Zavala J, Del-Toro-Sánchez L, Alvarez-Parrilla E, González-Aguilar G (2008) High relative humidity in-package of fresh-cut fruits and vegetables: advantage or disadvantage considering microbiological problems and antimicrobial delivering systems? J Food Sci 73(4):R41–R47

    Article  PubMed  CAS  Google Scholar 

  • Ayala-Zavala J, Rosas-Domínguez C, Vega-Vega V, González-Aguilar G (2010) Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: looking for integral exploitation. J Food Sci 75(8):R175–R181

    Article  PubMed  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    Article  PubMed  CAS  Google Scholar 

  • Berger RG (2007) Flavours and fragrances: chemistry bioprocessing and sustainability. Springer, Berlin

    Book  Google Scholar 

  • Betts G, Linton P, Betteridge R (1999) Food spoilage yeasts: effects of pH, NaCl and temperature on growth. Food Control 10(1):27–33

    Article  Google Scholar 

  • Bezić N, Skočibušić M, Dunkić V (2005) Phytochemical composition and antimicrobial activity of Satureja montana L. and Satureja cuneifolia Ten. essential oils. Acta Bot Croat 64(2):313–322

    Google Scholar 

  • Bouchra C, Achouri M, Idrissi Hassani L, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol 89(1):165–169

    Article  PubMed  CAS  Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50(1):1–17

    Article  PubMed  CAS  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 94(3):223–253

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia S, Vyas K (1977) In vitro effect of some volatile oil against Phytophthora parasitica var. piperina. J Res Indian Med Yoga Homeopath 1977:24–26

    Google Scholar 

  • Conte A, Scrocco C, Sinigaglia M, Del Nobile M (2007) Innovative active packaging systems to prolong the shelf life of mozzarella cheese. J Dairy Sci 90(5):2126–2131

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    PubMed  CAS  Google Scholar 

  • Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D (2007) Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. J Agric Food Chem 55(15):6300–6308

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Physiologists, Rockville, MD, USA, pp. 1250–1318

    Google Scholar 

  • Daferera DJ, Ziogas BN, Polissiou MG (2003) The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot 22(1):39–44

    Article  CAS  Google Scholar 

  • Ejechi B, Akpomedaye D (2005) Activity of essential oil and phenolic acid extracts of pepperfruit (Dennetia tripetala G. Barker; Anonaceae) against some food-borne microorganisms. Afr J Biotechnol 4(3):258–261

    CAS  Google Scholar 

  • Ellenrieder G (2004) Biotransformations of citrus flavanone glycosides. In: Pandey A (ed) Concise encyclopedia of bioresource technology. Food Products Press, New York, pp 189–199

    Google Scholar 

  • FAOSTAT (2007) FAO Statistical Database. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor

  • Garrity AR, Morton GA, Morton JC (2004) Nutraceutical mangosteen composition. Google Patents, Patent No.: US 6730333 B1, Appl. No.: 10/283,600, 4 May 2004

    Google Scholar 

  • Gorinstein S, Martin-Belloso O, Park YS, Haruenkit R, Lojek A, Cíz M, Caspi A, Libman I, Trakhtenberg S (2001) Comparison of some biochemical characteristics of different citrus fruits. Food Chem 74(3):309–315

    Article  CAS  Google Scholar 

  • Gorinstein S, Poovarodom S, Leontowicz H, Leontowicz M, Namiesnik J, Vearasilp S, Haruenkit R, Ruamsuke P, Katrich E, Tashma Z (2011) Antioxidant properties and bioactive constituents of some rare exotic Thai fruits and comparison with conventional fruits: in vitro and in vivo studies. Food Res Int 44(7):2222–2232

    Article  CAS  Google Scholar 

  • Guillen F, Zapata P, Martínez-Romero D, Castillo S, Serrano M, Valero D (2007) Improvement of the overall quality of table grapes stored under modified atmosphere packaging in combination with natural antimicrobial compounds. J Food Sci 72(3):S185–S190

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez J, Barry-Ryan C, Bourke P (2008) The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int J Food Microbiol 124(1):91–97

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo L, Sendra J (2003) Citrus fruits. composition and characterization. In: Caballero LTB, Finglas P (eds) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 1335–1341

    Chapter  Google Scholar 

  • Kabara J (1991) Phenols and chelators. In: Russell NJ, Gould GW (eds) Food preservatives. Blackie, London, pp 200–214

    Google Scholar 

  • Kalt W (2005) Effects of production and processing factors on major fruit and vegetable antioxidants. J Food Sci 70(1):R11–R19

    Article  CAS  Google Scholar 

  • Kanatt SR, Chander R, Sharma A (2010) Antioxidant and antimicrobial activity of pomegranate peel extract improves the shelf life of chicken products. Int J Food Sci Technol 45(2):216–222

    Article  CAS  Google Scholar 

  • Krishnakumar V, Gordon I (1996) Antioxidants–trends and developments. Int Food Ingredients 12:41–44

    Google Scholar 

  • Kroyer GT (1995) Impact of food processing on the environment—an overview. LWT-Food Sci Technol 28(6):547–552

    Article  CAS  Google Scholar 

  • Kunicka-Styczyńska A, Sikora M, Kalemba D (2009) Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems. J Appl Microbiol 107(6):1903–1911

    Article  PubMed  Google Scholar 

  • Lanciotti R, Gianotti A, Patrignani F, Belletti N, Guerzoni M, Gardini F (2004) Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends Food Sci Technol 15(3):201–208

    Article  CAS  Google Scholar 

  • Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S (2006) Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem 96(2):254–260

    Article  CAS  Google Scholar 

  • Maier T, Schieber A, Kammerer DR, Carle R (2009) Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112(3):551–559

    Article  CAS  Google Scholar 

  • Mandalari G, Bennett R, Bisignano G, Trombetta D, Saija A, Faulds C, Gasson M, Narbad A (2007) Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. J Appl Microbiol 103(6):2056–2064

    Article  PubMed  CAS  Google Scholar 

  • Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100(2):736–741

    Article  Google Scholar 

  • Marriott R (2010) Flavours-Greener chemistry preparation of traditional flavour extracts and molecules. Agro Food Ind Hi Tec 21(2):46

    CAS  Google Scholar 

  • Martín-Diana AB, Rico D, Barry-Ryan C (2008) Green tea extract as a natural antioxidant to extend the shelf-life of fresh-cut lettuce. Innov Food Sci Emerg Technol 9(4):593–603

    Article  Google Scholar 

  • Miljkovic D, Bignami GS (2002) Nutraceuticals and methods of obtaining nutraceuticals from tropical crops. Google Patents, Appl. No.: 10/067,569, Pub. No.: US 2002/0187239 A1, Pub, 12 Dec 2002

    Google Scholar 

  • Muthuswamy S, Vasantha Rupasinghe H (2007) Fruit phenolics as natural antimicrobial agents: selective antimicrobial activity of catechin, chlorogenic acid and phloridzin. J Food Agric Environ 5(3–4):81–85

    CAS  Google Scholar 

  • Muthuswamy S, Rupasinghe H, Stratton G (2008) Antimicrobial effect of cinnamon bark extract on Escherichia coli O157: H7, Listeria innocua and fresh-cut apple slices. J Food Saf 28(4):534–549

    Article  CAS  Google Scholar 

  • Negro C, Tommasi L, Miceli A (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87(1):41–44

    Article  PubMed  CAS  Google Scholar 

  • Okwu DE, Awurum AN, Okoronkwo JJ (2007) Phytochemical composition and in vitro antifungal activity screening of extracts from citrus plants against Fusarium oxysporum of okra plant (Hibiscus esculentus). Afr Crop Sci Conf Proc 8:1755–1758

    Google Scholar 

  • Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodriguez R, De la Garza H, Teixeira JA, Aguilar CN (2009) Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Ind Crop Prod 30(1):24–27

    Article  CAS  Google Scholar 

  • Osbourn AE (1999) Antimicrobial phytoprotectants and fungal pathogens: a commentary. Fungal Genet Biol 26(3):163–168

    Article  PubMed  CAS  Google Scholar 

  • Patrone V, Campana R, Vittoria E, Baffone W (2010) In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus. Curr Microbiol 60(4):237–241

    Article  PubMed  CAS  Google Scholar 

  • Peschel W, Sánchez-Rabaneda F, Diekmann W, Plescher A, Gartzía I, Jiménez D, Lamuela-Raventos R, Buxaderas S, Codina C (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97(1):137–150

    Article  CAS  Google Scholar 

  • Ponce A, Fritz R, Del Valle C, Roura S (2003) Antimicrobial activity of essential oils on the native microflora of organic Swiss chard. LWT-Food Sci Technol 36(7):679–684

    Article  CAS  Google Scholar 

  • Rasooli I, Moosavi M, Rezaee M, Jaimand K (2002) Susceptibility of microorganisms to Myrtus communis L. essential oil and its chemical composition. J Agric Sci Technol 4:127–133

    Google Scholar 

  • Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci Food Saf 8(3):157–180

    Article  CAS  Google Scholar 

  • Raymond Chia TW, Dykes GA (2010) Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars. Pharm Biol (Formerly Int J Pharmacog) 48(7):753–756

    Article  Google Scholar 

  • Robles-Sánchez M, Gorinstein S, Martín-Belloso O, Astiazarán-García H, González-Aguilar G, Cruz-Valenzuela R (2007) Frutos tropicales mínimamente procesados: Potencial antioxidante y su impacto en la salud. INCI 32(4):227–232

    Google Scholar 

  • Rodov V, Ben-Yehoshua S, Fang DQ, Kim JJ, Ashkenazi R (1995) Preformed antifungal compounds of lemon fruit: citral and its relation to disease resistance. J Agric Food Chem 43(4):1057–1061

    Article  CAS  Google Scholar 

  • Salas MP, Céliz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124(4):1411–1415

    Article  CAS  Google Scholar 

  • Sarkhoush A, Zamani Z, Fatahi R, Ghorbani H, Hadia J (2007) A review on medicinal characteristics of pomegranate (Punica granatum L.). J Med Plants 6(22):13–24

    Google Scholar 

  • Schieber A, Stintzing F, Carle R (2001) By-products of plant food processing as a source of functional compounds–recent developments. Trends Food Sci Technol 12(11):401–413

    Article  CAS  Google Scholar 

  • Schieber A, Müller D, Röhrig G, Carle R (2002) Effects of grape cultivar and processing on the quality of cold-pressed grape seed oils. Mitt Klosterneuburg 52:29–33

    CAS  Google Scholar 

  • Schuenzel KM, Harrison MA (2002) Microbial antagonists of foodborne pathogens on fresh, minimally processed vegetables. J Food Prot 65(12):1909–1915

    PubMed  Google Scholar 

  • Shrikhande AJ (2000) Wine by-products with health benefits. Food Res Int 33(6):469–474

    Article  CAS  Google Scholar 

  • Skandamis P, Koutsoumanis K, Fasseas K, Nychas GJE (2001) Inhibition of oregano essential oil and EDTA on Escherichia coli O157: H7. Ital J Food Sci 13(1):65–75

    CAS  Google Scholar 

  • Sobel JD, Wiesenfeld HC, Martens M, Danna P, Hooton TM, Rompalo A, Sperling M, Livengood C III, Horowitz B, Von Thron J (2004) Maintenance fluconazole therapy for recurrent vulvovaginal candidiasis. New Engl J Med 351(9):876–883

    Article  PubMed  CAS  Google Scholar 

  • Sokmen A, Gulluce M, Askin Akpulat H, Daferera D, Tepe B, Polissiou M, Sokmen M, Sahin F (2004) The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control 15(8):627–634

    Article  CAS  Google Scholar 

  • Soliman K, Badeaa R (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40(11):1669–1675

    Article  PubMed  CAS  Google Scholar 

  • Sonboli A, Babakhani B, Mehrabian A (2006) Antimicrobial activity of six constituents of essential oil from Salvia. Z Naturforsch C 61(3–4):160–164

    PubMed  CAS  Google Scholar 

  • Sun-Waterhouse D, Wen I, Wibisono R, Melton LD, Wadhwa S (2009) Evaluation of the extraction efficiency for polyphenol extracts from by-products of green kiwifruit juicing. Int J Food Sci Technol 44(12):2644–2652

    Article  CAS  Google Scholar 

  • Taveira M, Silva LR, Vale-Silva LA, Pinto E, Valentão P, Ferreres F, Guedes de Pinho P, Andrade PB (2010) Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. J Agric Food Chem 58(17):9529–9536

    Article  PubMed  CAS  Google Scholar 

  • Tehranifar A, Selahvarzi Y, Kharrazi M, Bakhsh VJ (2011) High potential of agro-industrial by-products of pomegranate (Punica granatum L.) as the powerful antifungal and antioxidant substances. Ind Crop Prod 34(3):1523–1527

    Article  CAS  Google Scholar 

  • Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 90(3):333–340

    Article  CAS  Google Scholar 

  • Tepe B, Akpulat HA, Sokmen M, Daferera D, Yumrutas O, Aydin E, Polissiou M, Sokmen A (2006) Screening of the antioxidative and antimicrobial properties of the essential oils of Pimpinella anisetum and Pimpinella flabellifolia from Turkey. Food Chem 97(4):719–724

    Article  CAS  Google Scholar 

  • Tripathi P, Dubey N (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharv Biol Technol 32(3):235–245

    Article  Google Scholar 

  • Troncoso-Rojas R, Tiznado-Hernández M (2007) Natural compounds to control fungal postharvest diseases. In: Troncoso-Rojas R, Tiznado-Hernández M, González-León A (eds) Recent advances in alternative postharvest technologies to control fungal diseases in fruits and vegetables. Research Sign Post, Trivandrum, pp 127–156

    Google Scholar 

  • Tuchila C, Jianu I, Rujescu CI, Butur M, Ahmadi-Khoie M, Negrea I (2008) Evaluation of the antimicrobial activity of some plant extracts used as food additives. J Food Agric Environ 6(3–4):68–70

    Google Scholar 

  • Vekiari SA, Protopapadakis EE, Papadopoulou P, Papanicolaou D, Panou C, Vamvakias M (2002) Composition and seasonal variation of the essential oil from leaves and peel of a Cretan lemon variety. J Agric Food Chem 50(1):147–153

    Article  PubMed  CAS  Google Scholar 

  • Veldhuizen EJA, Tjeerdsma-van Bokhoven JLM, Zweijtzer C, Burt SA, Haagsman HP (2006) Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem 54(5):1874–1879

    Article  PubMed  CAS  Google Scholar 

  • Veriotti T, Sacks R (2001) High-speed GC and GC/time-of-flight MS of lemon and lime oil samples. Anal Chem 73(18):4395–4402

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P (1997) Phytoalexins. In: Vidhyasekaran P (ed) Fungal pathogenesis in plants and crops: molecular biology and host defense mechanisms. Marcel Dekker, New York, pp 380–455

    Google Scholar 

  • Vignoli J, Bassoli D, Benassi M (2011) Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem 124(3):863–868

    Article  CAS  Google Scholar 

  • Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez J (2008) Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 19(12):1130–1138

    Article  CAS  Google Scholar 

  • White J, McFadden J (2008) Contact allergens in food ingredients and additives: atopy and the hapten-atopy hypothesis. Contact Dermatitis 58(4):245–246

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. González-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viacava, G.E., Ansorena, M.R., Roura, S.I., González-Aguilar, G.A., Ayala-Zavala, J.F. (2013). Fruit Processing Byproducts as a Source of Natural Antifungal Compounds. In: Razzaghi-Abyaneh, M., Rai, M. (eds) Antifungal Metabolites from Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_16

Download citation

Publish with us

Policies and ethics