Skip to main content

Antifungal Compounds from Latin American Plants

  • Chapter
  • First Online:
Antifungal Metabolites from Plants

Abstract

Latin American region comprises six of the most biologically diverse countries in the world, thus constituting one of the planet areas richest in biodiversity. Some efforts have been made to screen plants of the whole region and also of each country, but the amount of studies in each country is not correlated with its vegetal diversity. Regarding antifungal compounds isolated from this region, many structural types that have demonstrated antifungal properties are presented here. These previous studies are important starting points for the development of new antifungal drugs. However, most studies are preliminary and begin and end with in vitro assays without comparative toxicity studies or in vivo tests. Few of them deepen the mechanisms of action and with rare exceptions, no clinical studies were carried out. A close collaboration among Latin American countries one each other and with the whole world is highly needed and might help in the discovery of new natural antifungal structures from Latin American plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agüero M, Svetaz L, Sánchez M, Luna L, Lima B, López M, Zacchino S, Palermo J, Wunderlin D, Feresin G, Tapia A (2011) Argentinean Andean propolis associated with the medicinal plant Larrea nitida Cav. (Zygophyllaceae). HPLC-MS and GC-MS characterization and antifungal activity. Food Chem Toxicol 49:1970–1978

    PubMed  Google Scholar 

  • Alanis-Garza B, González-González G, Salazar-Aranda R, de Torres Waksman N, Rivas-Galindo V (2007) Screening of antifungal activity of plants from the northeast of Mexico. J Ethnopharmacol 114:471–486

    Google Scholar 

  • Alonso Paz E, Cerdeiras M, Fernandez J, Ferreira F, Moyna P, Soubes M, Vázquez A, Vero S, Zunino L (1995) Screening of Uruguayan medicinal plants for antimicrobial activities. J Ethnopharmacol 45:67–70

    PubMed  CAS  Google Scholar 

  • Álvarez L, Perez M, González J, Navarro V, Villarreal M, Olson J (2001) SC-1, antimycotic spirostan saponin from Solanum chrysotrichum. Planta Med 67:372–374

    PubMed  Google Scholar 

  • Alvarez S, Cortadi A, Juárez M, Petenatti E, Tomi F, Casanova J, van Baren C, Zacchino S, Vila R (2012) (-)-5,6-Dehydrocamphor from the antifungal essential oil of Zuccagnia punctata. Phytochemistry Lett 5:194–199

    CAS  Google Scholar 

  • Ardao A (1993) Panamericanismo y latinoamericanismo. In: Zea L (ed) America Latina en sus ideas. Siglo XXI y UNESCO Press, Mexico, pp 157–171

    Google Scholar 

  • Avello M, López C, Gatica C, Bustos E, Brieva A, Pastene E, Bittner M (2012) Efectos antimicrobianos de extractos de plantas chilenas de las familias Lauraceae y Atherospermataceae. Rev Cubana Plant Med 17:73–83

    Google Scholar 

  • Baldoqui D, Kato M, Cavalheiro A, Bolzani V, Young MC, Furlan M (1999) A chromene and prenylated benzoic acid from Piper aduncum. Phytochemistry 51:899–902

    PubMed  CAS  Google Scholar 

  • Barnes C, Loder J (1962) Structure of polygodial, a new sesquiterpene dialdehyde from Polygonum hydropiper L. Austr J Chem 15:322–327

    CAS  Google Scholar 

  • Berry P (2002) Diversidad y endemismo en los bosques neotropicales de bajura. In: Guariguata M, Catan G (eds) Ecología y conservación de bosques. Libro Universitario Regional (Eulac/GTZ), Cartago, pp 83–96

    Google Scholar 

  • Betancur-Galvis L, Zapata B, Baena A, Bueno J, Ruiz-Nova C, Stashenko E, Mesa-Arango A (2011) Antifungal, cytotoxic and chemical analyses of essential oils of Lippia origanoides H.B.K. grown in Colombia. Salud UIS 43:141–148

    Google Scholar 

  • Bovarnick A, Alpizar F, Schnell C (eds) (2010) The importance of biodiversity and ecosystems in economic growth and equity in Latin America and the Caribbean: an economic valuation of ecosystems. United Nations development programme

    Google Scholar 

  • Braga F, Bouzada M, Fabri R, Matos M, Moreira F, Scio E, Coimbra E (2007) Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J Ethnopharmacol 111:396–402

    PubMed  Google Scholar 

  • Brandão M, Zanetti N, Oliveira P, Grael C, Santos A, Monte-Mór R (2008) Brazilian medicinal plants described by 19th century European naturalists in the official Pharmacopoeia. J Ethnopharmacol 120:141–148

    PubMed  Google Scholar 

  • Brandão G, Kroom E, Duarte M, Braga F, de Souza Filho J, Braga de Oliveira A (2010) Antimicrobial antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile mart. Phytomedicine 17:926–929

    PubMed  Google Scholar 

  • Brian P, Curtis P, Hemming H (1949) A substance causing abnormal development of fungal hyphae produced by Penicillium janczewskii Zal: III. Identity of “curling factor” with griseofulvin. Trans British Mycol Soc 32:30–33

    CAS  Google Scholar 

  • Cáceres A, López B, Giron M, Logemann H (1991) Plants used in Guatemala for the treatment of dermatophytic infections 1. Screening for antimycotic activity of 44 plant extracts. J Ethnopharmacol 31:263–276

    PubMed  Google Scholar 

  • Castelli M, Cortés J, Escalante A, Bah M, Pereda-Miranda R, Ribas J, Zacchino S (2002) In vitro inhibition of (1,3)β-glucan synthase by glycolipids from Convolvulaceous species. Planta Med 68:739–742

    PubMed  CAS  Google Scholar 

  • Castelli M, Lodeyro A, Malheiros A, Zacchino S, Roveri O (2005) Inhibition of mitochondrial ATP synthesis by polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem Pharmacol 70:82–89

    PubMed  CAS  Google Scholar 

  • Cleaves C (2001) Etnobotánica médica participativa en el Parque Nacional Lachua (Tesis). Universidad de San Carlos de Guatemala, Guatemala

    Google Scholar 

  • Coelho de Souza G, Haas A, von Poser G, Schapoval E, Elisabetsky E (2004) Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. J Ethnopharmacol 90:135–143

    PubMed  Google Scholar 

  • Correia P (1984) Dicionário de plantas úteis do brasil e das exóticas cultivadas. Instituto Brasileiro de Desenvolvimiento Forestal, Imprenta Nacional, Río de Janeiro

    Google Scholar 

  • Cos P, Vlietink A, Vanden Berghe D, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept”. J Ethnopharmacol 106:290–302

    PubMed  CAS  Google Scholar 

  • Cruz M, Santos P, Barbosa A, de Mélo D, Alviano C, Antoniolli A, Alviano D, Trindade R (2007) Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. J Ethnopharmacol 111:409–412

    PubMed  CAS  Google Scholar 

  • Damián-Badillo L, Salgado-Garciglia R, Martínez-Muñoz R, Martinez-Pacheco M (2008) Antifungal properties of some Mexican medicinal plants. Open Nat Prod J 1:27–33

    Google Scholar 

  • Danelutte A, Lago J, Young M, Kato M (2003) Antifungal flavanones and prenylated hydroquinones from Piper crassinervium. Phytochemistry 64:555–559

    PubMed  CAS  Google Scholar 

  • de Almeida Alves T, LacerdaRibeiro F, Kloos H, Zani C (2001) Polygodial, the fungitoxic component from the Brazilian medicinal plant Polygonum punctatum. Mem Inst Oswaldo Cruz 96:831–833

    Google Scholar 

  • Debonsi NH, Aléci A, Kato M, Bolzani V, Young M, Cavalheiro A, Furlan M (2000) Antifungal amides from Piper hispidum and Piper tuberculatum. Phytochemistry 55:621–626

    Google Scholar 

  • Derita M, Gattuso S, Zacchino S (2008) Occurrence of polygodial in species of Polygonum genus belonging to Persicaria section. Biochem System Ecol 36:55–58

    CAS  Google Scholar 

  • Derita M, Leiva M, Zacchino S (2009) Influence of plant pñart, season of collection and content of the main active constituent on the antifungal properties of Polygonum acuminatum Kunth. J Ethnopharmacol 124:377–383

    PubMed  CAS  Google Scholar 

  • Derita M, Zacchino S (2011) Validation of the ethnopharmacological use of Polygonum persicaria for its antifungal properties. Nat Prod Comm 6:931–933

    CAS  Google Scholar 

  • Di Liberto M, Svetaz L, Furlan R, Zacchino S, Delporte C, Novoa M, Asencio M, Cassels B (2010) Antifungal activity of saponin-rich extracts of Phytolacca dioica and of the sapogenins obtained through hydrolysis. Nat Prod Commun 5:1013–1018

    PubMed  Google Scholar 

  • Ekabo O, Farnsworth N, Henderson T, Mao G, Mukherjee R (1996) Antifungal and molluscicidal saponins from Serjania salzmanniana. J Nat Prod 59:431–435

    PubMed  CAS  Google Scholar 

  • Escalante A, Santecchia C, López S, Gattuso M, Gutiérrez Ravelo A, Delle Monache F, González M, Zacchino S (2002) Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol 82:29–34

    PubMed  CAS  Google Scholar 

  • Escalante A, Gattuso M, Pérez P, Zacchino S (2008) Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetramera Hauman. J Nat Prod 71:1720–1725

    PubMed  CAS  Google Scholar 

  • Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005–2009). Rev Iberoamer Micol 26:15–22

    Google Scholar 

  • Estévez Y, Castillo D, Tangoa Pisango M, Arévalo J, Rojas R, Alban J, Deharo E, Bourdy G, Sauvain M (2007) Evaluation of the leishmanicidal activity of plants used by Peruvian Chayahuita ethnic group. J Ethnopharmacol 114:254–259

    PubMed  Google Scholar 

  • Fenner R, Sortino M, Kuze Rates S, Dall′Agnol R, Ferraz A, Bernardi A, Albring D, Nor C, von Poser G, Schapoval E, Zacchino S (2005) Antifungal activity of some Brazilian Hypericum species. Phytomedicine 12:136–140

    Google Scholar 

  • Freitas G, Saga Kitamura R, Lago J, Young M, Guimaraes E, Kato M (2009) Caldensinic acid, a prenylated benzoic acid from Piper caldense. Phytochemistry Lett 2:119–122

    CAS  Google Scholar 

  • Freixa B, Vila R, Ferro E, Adzet T, Cañigueral S (2001) Antifungal principles from Piper fulvescens. Planta Med 67:873–875

    PubMed  CAS  Google Scholar 

  • Freixa B, Vila R, Vargas L, Lozano N, Adzet T, Cañigueral S (1998) Screening for antifungal activity of nineteen Latin American plants. Phytother Res 12:427–430

    Google Scholar 

  • Frost D, Brandt K, Cugier D, Goldman R (1995) A whole cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J Antibiot 48:306–310

    PubMed  CAS  Google Scholar 

  • Fukuda D, Natatsukasa W, Yao R, Hunt A, Gordee R, Zeckner D, Mynderse J (1991) A45507, a complex of fungal cell wall inhibitors produced by a mold. 31st ICAAC meeting (Chicago, Il, USA) poster #211

    Google Scholar 

  • Gaitán I, Paz A, Zacchino S, Tamayo G, Giménez A, Pinzón R, Cáceres A, Gupta M (2011) Subcutaneous antifungal screening of Latin American plant extracts against Sporothrix schenckii and Fonsecaea pedrosoi. Pharm Biol 49:907–919

    PubMed  Google Scholar 

  • Garcia-Sosa K, Sanchez-Medina A, Álvarez S, Zacchino S, Veitch N, Simá-Polanco P, Peña-Rodríguez L (2011) Antifungal activity of sakurasaponin from the root extracts of Jacquinia flammea. Nat Prod Res 25:1185–1189

    PubMed  CAS  Google Scholar 

  • Gold W, Stout H, Pagano J, Donovic R (1955) Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I. In vitro studies. Antib Ann 3:579–586

    Google Scholar 

  • Goleniowski M, Bongiovanni G, Palacio L, Núñez C, Cantero J (2006) Medicinal plants from the “Sierra de Comechingones”, Argentina. J Ethnopharmacol 107:324–341

    PubMed  Google Scholar 

  • Gonzalez M, Zamilpa A, Marquina S, Navarro V, Alvarez L (2004) Antimycotic spirostanol saponins from Solanum hispidum leaves and their structure-activity relationships. J Nat Prod 67:938–941

    PubMed  CAS  Google Scholar 

  • Gupta M (1995) 270 Plantas medicinales Iberoamericanas. CYTED-Convenio Andrés Bello (ed) Bogotá

    Google Scholar 

  • Gupta M (2008) Plantas medicinales Iberoamericanas. Convenio Andrés Bello (ed) Bogotá

    Google Scholar 

  • Gutkind G, Martino V, Graña N, Coussio J, de Torres R (1981) Screening of South American plants for biological activities. Fitoterapia 52:213–218

    Google Scholar 

  • Hammond PM (1995) The record to date: described species. In: Heywood V, Watsin R (eds) Global biodiversity assessment. Cambridge University Press, Cambridge, pp 113–138

    Google Scholar 

  • He X, Mocek U, Floss H, Caceres A, Giron L, Buckley H, Cooney G, Manns J, Wilson B (1994) An antifungal compound from Solanum nigrescens. J Ethnopharmacol 43:173–177

    PubMed  CAS  Google Scholar 

  • Hernández M, Abedini W and Delucchi G (1998) Estrategias para la conservación de Phytolacca tetramera Hauman (Phytolaccaceae), especie endémica de la Provincia de Buenos Aires; Abstract. XXVI Jornadas Argentinas de Botánica, Rio Cuarto (Córdoba), Cartel Nº 307

    Google Scholar 

  • Herrera-Arellano A, Jiménez-Ferrer E, Zamilpa A, Martínez-Rivera M, Rodríguez-Tovar A, Herrera-Alvarez S, Salas-Andonegui M, Nava-Xalpa M, Méndez-Salas A, Tortoriello J (2009) Exploratory study on the clinical and mycological effectiveness of herbal medicinal product from Solanum chrysotrichum in patients with Candida yeast-associated vaginal infections. Planta Med 75:466–471

    PubMed  CAS  Google Scholar 

  • Herrera-Arellano A, Rodríguez-Soberanes A, Martínez-Rivera M, Martínez-Cruz E, Zamilpa A, Álvarez L, Tortoriello J (2003) Effectiveness and tolerability of a standardized phytodrug derived from Solanum chrysotrichum on tinea pedis: a controlled and randomized clinical trial. Planta Med 69:390–395

    PubMed  CAS  Google Scholar 

  • Ioset J, Marston A, Gupta M, Hostettmann K (1998) Antifungal xanthones from roots of Marila laxiflora. Pharm Biol 36:103–106

    CAS  Google Scholar 

  • Ioset J, Marston A, Gupta M, Hostettmann K (2000a) Antifungal and larvicidal cordial quinones from the roots of Cordia curassavica. Phytochemistry 53:613–617

    CAS  Google Scholar 

  • Ioset J, Marston A, Gupta M, Hostettmann K (2000b) Antifungal and larvicidal compounds from the root bark of Cordia alliodora. J Nat Prod 63:424–426

    CAS  Google Scholar 

  • Koroishi A, Foss S, Garcia Cortez D, Ueda-Nakamura T, Nakamura C, Dias Filho B (2008) In vitro antifungal activity of extracts and neolignans from Piper regnelli against dermatophytes. J Ethnopharmacol 117:270–277

    PubMed  CAS  Google Scholar 

  • Kurdelas R, Tapia A, Lima B, Feresin G, González Sierra M, Rodríguez M, Zacchino S, Enriz R, Freile M (2010) Antifungal activity of extracts and prenylated coumarins isolated from Baccharis darwinii (Asteraceae). Molecules 15:4898–4907

    Google Scholar 

  • Kuster R, Arnold N, Wessjohann L (2009) Antifungal flavonoids from Tibouchina grandifolia. Biochem Syst Ecol 37:63–65

    CAS  Google Scholar 

  • Lago J, Chaves M, Ayres M, Agripino D, Young M (2007) Evaluation of antifungal DNA-damaging activities of alkaloids from branches of Porcelia macrocarpa. Planta Med 73:292–295

    PubMed  CAS  Google Scholar 

  • Lago J, Chen A, Young M, Guimaraes E, de Oliveira A, Kato M (2009) Prenylated benzoic acid derivatives from Piper aduncum L. and P. hostmannianum C. DC. (Piperaceae). Phytochem Lett 2:96–98

    CAS  Google Scholar 

  • Lee S, Lee J, Lunde C, Kubo I (1999) In vitro antifungal susceptibilities of Candida albicans to polygodial, a sesquiterpene dialdehyde. Planta Med 65:204–208

    PubMed  CAS  Google Scholar 

  • Li X, Josji A, ElSohly H, Khan S, Jacob M, Zhang Z, Kahn I, Ferreira D, Walker L, Broedel S, Raulli R, Cihlar R (2002) Fatty acid synthase inhibitors from plants: isolation, structure elucidation and SAR studies. J Nat Prod 65:1909–1914

    PubMed  CAS  Google Scholar 

  • Lima B, Agüero M, Zygadlo J, Tapia A, Solis C, Rojas de Arias A, Yaluff G, Zacchino S, Feresin G, Schmeda G (2009) Antimicrobial activity of extracts, essential oil and metabolites obtained from Tagetes mendocina. J Chil Chem Soc 54:68–72

    CAS  Google Scholar 

  • Lima B, López S, Luna L, Agüero M, Aragón L, Tapia A, Zacchino S, López M, Zygadlo J, Feresin G (2011) Essential oils of medicinal plants from the central Andes of Argentina: chemical composition and antifungal., antibacterial and insect repellent activities. Chem-Biodivers 8:924–936

    PubMed  CAS  Google Scholar 

  • Lima B, Sánchez M, Luna L, Agüero M, Zacchino S, Filippa E, Palermo J, Tapia A, Feresin G (2012) Antimicrobial and antioxidant activities of Gentianella multicaulis collected on the Andean slopes of San Juan province. Z Naturforsch C 67:29–38

    PubMed  CAS  Google Scholar 

  • Lima E, Morais V, Gomes S, Cechinel Filho V, Miguel O, Yunes R (1995) Preliminary evaluation of antifungal activity of xanthoxyline. Acta Farm Bonaer 14:213–216

    CAS  Google Scholar 

  • Lopes N, Kato M, Yoshida M (1999) Antifungal constituents from roots of Virola surinamensis. Phytochemistry 51:29–33

    CAS  Google Scholar 

  • López S, Furlan R, Zacchino S (2011) Detection of antifungal compounds in Polygonum ferrugineum Wedd., extracts by bioassay-guided fractionation- Some evidences of their mode of action. J Ethnopharmacol 138:633–636

    PubMed  Google Scholar 

  • Lozoya X, Navarro V, García M, Zurita M (1991) Solanum chrysotrichum (Schidl.) a plant used in Mexico for the treatment of skin mycoses. J Ethnopharmacol 36:127–132

    Google Scholar 

  • Maillard M, Gupta M, Hostettmann K (1987) Antifungal activity of epicatechin gallate from Coccoloba dugandiana. Planta Med 65:781–782

    Google Scholar 

  • Malheiros A, Cechinel Filho V, Schmitt C, Yunes R, Escalante A, Svetaz L, Zacchino S, Delle Monache F (2005) Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay-guided fractionation. J Pharm Pharmaceut Sci 8:335–339

    CAS  Google Scholar 

  • Mathew B, Nath M (2009) Recent approaches to antifungal therapy for invasive mycoses. ChemMedChem 4:310–323

    PubMed  CAS  Google Scholar 

  • McCallion R, Cole A, Walker J, Blunt J, Munro M (1982) Antibiotic substances from New Zealand plants 2. Polygodial, an anti-Candida agent from Pseudowintera colorata. Planta Med 44:134–138

    PubMed  CAS  Google Scholar 

  • Mesa-Arango A, Montiel J, Martínez C, Zapata C, Pino N, Bueno J, Stashenko E (2007) Actividad in vitro anti-Candida y anti-Aspergillus de aceites esenciales de plantas de la familia Piperaceae. Scientia et Technica XIII:247–249

    Google Scholar 

  • Mesa-Arango A, Montiel J, Betancur-Galvis L, Bueno J, Baena A, Durán D, Martínez J, Stashenko E (2008) Antifungal activity and chemical composition of the essential oils of Lippia alba (Miller) N.E Brown, grown in different regions of Colombia. J Essent Oil Res 163:337–344

    Google Scholar 

  • Mesa-Arango A, Montiel-Ramos J, Zapata B, Durán C, Betancur-Galvis L, Stashenko E (2009) Citral and carvone chemotypes from the essential oils of Colombian Lippia alba (Mill.)N.E. Brown: composition, cytotoxicity and antifungal activity. Mem Inst Oswaldo Cruz 104:878–884

    PubMed  CAS  Google Scholar 

  • Morales G, Paredes A, Sierra P, Loyola L (2008) Antimicrobial activity of three species of Baccharis used in the traditional medicine of Northern of Chile. Molecules 13:790–794

    PubMed  CAS  Google Scholar 

  • Moreno M, Rodriguez V (1981) Yiamoloside B a fungistatic saponin of Phytolacca octandra. Phytochemistry 20:1446–1447

    CAS  Google Scholar 

  • Muschietti L, Derita M, Sulsen V, Muñoz J, Ferraro G, Zacchino S, Martino V (2005) In vitro antifungal assay of traditional Argentine medicinal plants. J Ethnopharmacol 102:232–238

    Google Scholar 

  • Navarro V, Gonzalez A, Fuentes M, Aviles M, Rios M, Zepeda G, Rojas M (2003) Antifungal activities of nine traditional Mexican plants. J Ethnopharmacol 87:85–88

    Google Scholar 

  • Odds F (2005) Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol 22:229–237

    PubMed  Google Scholar 

  • Pacciaroni A, Gette M, Derita M, Ariza-Espinar L, Gil R, Zacchino S, Silva G (2008) Antifungal activity of Heterothalamus alienus metabolites. Phytother Res 22:524–528

    CAS  Google Scholar 

  • Peláez F, Cabello A, Platas G, Diez M, González del Val A, Martán I, Vicente F, Bills G, Giacobbe R, Schwartz R, Onishi J, Meinz M, Abbruzzo G, Flattery A, Kong L, Kurtz M (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema spp biological activity and taxonomy of the producing organisms. System Appl Microbiol 23:333–343

    Google Scholar 

  • Peralta M, Calise M, Fornari M, Ortega M, Diez R, Cabrera J, Pérez C (2012) A prenylated flavanone from Dalea elegans inhibits rhodamine 6G efflux and reverses fluconazole resistance in Candida albicans. Planta Med 78:981–987

    PubMed  CAS  Google Scholar 

  • Pessini G, Dias Filho B, Nakamura C, Garcia Cortez D (2005) Antifungal activity of the extracts and neolignans from Piper regnelli (Miq.) C. DC. var. pallescens (C.DC.) Yunck. J Braz Chem Soc 16:1130–1133

    CAS  Google Scholar 

  • Petenatti E, Gette M, Derita M, Petenatti M, Solis C, Zuljan F, Del Vitto L, Zacchino S (2008) Importance of the ethnomedical information for the detection of antifungal properties in plant extracts from the Argentine flora. In: Martino V, Muschietti L (eds) South American medicinal plants as potential source of bioactive compounds. Transworld Research Network, Kerala, pp 15–38

    Google Scholar 

  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76:93–98

    PubMed  CAS  Google Scholar 

  • Portillo A, Vila R, Freixa B, Ferro E, Parella T, Casanova J, Cañigueral S (2005) Antifungal sesquiterpene from the root of Vernonanthura tweediana. J Ethnopharmacol 97:49–52

    PubMed  CAS  Google Scholar 

  • Quiroga E, Sampietro A, Vattuone M (2001) Screening antifungal activities of selected medicinal plants. J Ethnopharmacol 74:89–96

    PubMed  CAS  Google Scholar 

  • Quiroga E, Sampietro D, Sgariglia M, Soberón J, Vattuone M (2008) Antimycotic activity of 5′-prenylisoflvanones of the plant Geoffroea decorticans against Aspergillus species. Int J Food Microbiol 132:42–46

    Google Scholar 

  • Rahalison L, Benathan M, Monod M, Frenk E, Gupta M, Solis PN, Fuzzati N, Hosttetmann K (1995) Antifungal principles of Baccharis pedunculata. Planta Med 61:360–362

    PubMed  CAS  Google Scholar 

  • Rahalison L, Hamburger M, Hostetmann K, Monod M, Frenk E, Gupta M, Santana A, Correa M, Gonzalez A (1993) Screening for antifungal activity of Panamanian plants. Pharm Biol 31:68–76

    Google Scholar 

  • Ríos J, Recio M (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100:80–84

    PubMed  Google Scholar 

  • Rojas R, Bustamanrte B, Bauer J, Fernández I, Albán J, Lock O (2003) Antimicrobial activity of selected Peruvian medicinal plants. J Ethnopharmacol 88:199–204

    PubMed  Google Scholar 

  • Rouhi M (2003) Rediscovering natural products. Chem Engin News 81:77–91

    Google Scholar 

  • Sanz-Biset J, Campos-de-la-Cruz J, Epiquién-Rivera M, Cañigueral S (2009) A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J Ethnopharmacol 122:333–362

    PubMed  Google Scholar 

  • Sartori M, Pretto J, Cruz A, Brescianio F, Yunes R, Sortino M, Zacchino S, Cechinel Filho V (2003) Antifungal activity of fractions and two pure compounds of flowers from Wedelia paludosa (Acmela brasiliensis) Asteraceae. Pharmazie 58:567–569

    PubMed  CAS  Google Scholar 

  • Scarpa G (2004) Medicinal plants used by the criollos of northwestern Argentine Chaco. J Ethnopharmacol 91:115–135

    PubMed  Google Scholar 

  • Silva I Jr, Cechinel Filho V, Zacchino S, da S Lima C, de Oliveira Martins D (2008) Antimicrobial screening of some medicinal plants from Mato Grosso Cerrado. Braz J Pharmacogn 19:242–248

    Google Scholar 

  • Silva I Jr, Raimondi M, Zacchino S, Cechinel Filho V, Noldin V, Rao V, Silva R, Lima J, de Oliveira Martins D (2010) Evaluation of the antifungal activity and mode of action of Lafoensia pacari St Hil., Lythraceae, stem-bark extracts, fractions and ellagic acid. Braz J Pharmacogn 20:422–428

    Google Scholar 

  • Stein A, Alvarez S, Avancini C, Zacchino S, von Poser G (2006) Antifungal activity of some coumarins obtained from species of Pterocaulon (Asteraceae). J Ethnopharmacol 107:95–98

    PubMed  CAS  Google Scholar 

  • Svetaz L, Zuljan F, Derita M, Petenatti E, Tamayo G, Cáceres A, Cechinel Filho V, Giménez A, Pinzón R, Zacchino S, Gupta M (2010) Value of the ethnomedical information for the discovery of plants with antifungal properties. A survey among seven Latin American countries. J Ethnopharmacol 127:137–158

    PubMed  Google Scholar 

  • Teixeira M, Figueira G, Sartoratto A, Garcia Reder V, Delarmelina C (2005) Anti-Candida activity of Brazilian medicinal plants. J Ethnopharmacol 97:305–311

    Google Scholar 

  • Treyvand V, Petit P, Ta C, Nuñez R, Sanchez-Vindas P, Poveda L, Smith M, Arnason J, Durst T (2006) Phytochemistry and antifungal properties of the newly discovered tree Pleodendron costaricense. J Nat Prod 69:1005–1009

    Google Scholar 

  • Vasques da Silva R, Debonsi NH, Kato M, Bolzani V, Méda C, Young M, Furlan M (2002) Antifungal amides from Piper arboreum and Piper tuberculatum. Phytochemistry 59:521–527

    PubMed  CAS  Google Scholar 

  • Vila R, Santana A, Pérez-Roses R, Valderrama A, Castelli M, Mendonca S, Zacchino S, Gupta M, Cañigueral S (2010) Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Biores Technol 101:2510–2514

    CAS  Google Scholar 

  • Weitzman I, Summerbell R (1995) The dermatophytes. Clin Microbiol Rev 8:240–259

    PubMed  CAS  Google Scholar 

  • Wen L, Haddad M, Fernández I, Espinoza G, Ruiz C, Neyra E, Bustamante B, Rojas R (2011) Actividad antifúngica de cuatro plantas usadas en la medicina peruana. Aislamiento de 3′-formil-2′4′6′-trihidroxichalcona, principio activo de Psidium acutangulum. Rev Soc Quim Peru 77:199–204

    CAS  Google Scholar 

  • Zacchino S, Rodriguez G, Pezzenati G, Orellana G (1997) In vitro evaluation of antifungal properties of 8.O.4′-neolignans. J Nat Prod 60:659–662

    PubMed  CAS  Google Scholar 

  • Zacchino S, Santecchia C, López S, Muñoz J, Cruañes A, Vivot E, Cruañes M, Salinas A, Ruiz R, Ruiz S (1998) In vitro antifungal evaluation and studies on mode of action of eight selected species from the Argentine flora. Phytomed 5:389–395

    CAS  Google Scholar 

  • Zamilpa A, Tortoriello J, Navarro V, Delgado G, Alvarez L (2002) Five new steroidal saponins from S. chrysotrichum leaves and their antimycotic activity. J Nat Prod 65:1815–1819

    PubMed  CAS  Google Scholar 

  • Zapata B, Durán C, Stashenko E, Betancur-Galvis L, Mesa-Arango A (2010) Actividad antimicótica y citotóxica de aceites esenciales de plantas de la familia Asteraceae. Rev Iberoam Micol 27:101–103

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Zacchino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svetaz, L. et al. (2013). Antifungal Compounds from Latin American Plants. In: Razzaghi-Abyaneh, M., Rai, M. (eds) Antifungal Metabolites from Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38076-1_1

Download citation

Publish with us

Policies and ethics