Advertisement

Multimodal Processes Cyclic Steady States Scheduling

  • G. Bocewicz
  • P. Nielsen
  • Z. Banaszak
  • Q. V. Dang
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

This paper describes a multimodal transportation network (MTN) in which several unimodal networks (AGVs, hoists, lifts, suspended monorail systems, etc.) interact each other via common shared workstations as to provide a variety of demand-responsive workpiece transportation/handling services. The set of transport modes provides connection support for production flows treated as agents trying to realize their origin-destination routes in the MTN. The aim is to provide a declarative model enabling to state a constraint satisfaction problem aimed at multimodal transportation processes (MTP) scheduling, while servicing production flows. In other words, assuming a given topology of MTN, the main objective is to provide the declarative modeling framework enabling to refine conditions guaranteeing the MTP cyclic steady states reachability.

Keywords

multimodal cyclic processes declarative modeling constraints programming cyclic scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bielli, M., Boulmakoul, A., Mouncif, H.: Object modeling and path computation for multimodal travel systems. European Journal of Operational Research 175(3), 1705–1730Google Scholar
  2. 2.
    Bernaer, S.: A Multi Agent System to Control Complexity in Multi Modal Transport. In: Proceedings of the IEEE Conf. on Cybernetics and Intelligent Systems, pp. 1–6 (2006)Google Scholar
  3. 3.
    Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic scheduling of multimodal processes. In: Golińska, P. (ed.) EcoProduction and Logistics, vol. 1, pp. 203–238. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Bocewicz, G., Banaszak, Z.: Declarative approach to cyclic steady states space refinement: periodic processes scheduling. International Journal of Advanced Manufacturing Technology (in print, 2013), doi:10.1007/s00170-013-4760-0Google Scholar
  5. 5.
    Bocewicz, G., Wójcik, R., Banaszak, Z.: Cyclic Scheduling for Supply Chain Network. In: Rodríguez, J.M.C., Pérez, J.B., Golinska, P., Giroux, S., Corchuelo, R. (eds.) Trends in PAAMS. AISC, vol. 157, pp. 39–47. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Korytkowski, P., Wisniewski, T., Zaikin, O.: Multi-criteria approach to comparison of inspection allocation for multi-product manufacturing systems in make-to-order sector. Control and Cybernetics 39(1), 97–116 (2010)Google Scholar
  7. 7.
    Levner, E., Kats, V., Alcaide, D., Pablo, L., Cheng, T.C.E.: Complexity of cyclic scheduling problems: A state-of-the-art survey. Computers & Industrial Engineering 59(2), 352–361 (2010)CrossRefGoogle Scholar
  8. 8.
    Friedrich, M.: A multi-modal transport model for integrated planning. In: Proceedings of 8th World Conference on Transport Research, vol. 2, pp. 1–14. Elsevier (1999)Google Scholar
  9. 9.
    Polak, M., Majdzik, P., Banaszak, Z., Wójcik, R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundamenta Informatice 60(1-4), 269–289 (2004)zbMATHGoogle Scholar
  10. 10.
    Song, J.-S., Lee, T.-E.: Petri net modeling and scheduling for cyclic job shops with blocking. Computers & Industrial Engineering 34(2), 281–295 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Trouillet, B., Korbaa, O., Gentina, J.-C.K.: Formal Approach for FMS Cyclic Scheduling. IEEE SMC Transactions, Part C 37(1), 126–137 (2007)Google Scholar
  12. 12.
    Von Kampmeyer, T.: Cyclic scheduling problems, Ph.D. Dissertation, Fachbereich Mathematik/Informatik, Universität Osnabrück (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Bocewicz
    • 1
  • P. Nielsen
    • 2
  • Z. Banaszak
    • 3
  • Q. V. Dang
    • 2
  1. 1.Department of Electronics and Computer ScienceKoszalin University of TechnologyKoszalinPoland
  2. 2.Department of Mechanical and Manufacturing EngineeringAalborg UniversityAalborgDenmark
  3. 3.Department of Business InformaticsWarsaw University of TechnologyWarsawPoland

Personalised recommendations