Advertisement

Defining and Transforming Models of Parkinson Patients in the Development of Assisted-Living Multi-agent Systems with INGENIAS

  • Iván García-Magariño
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

Some people suffer from the Parkinson disease and need assistance for living. Multi-agent Systems (MASs) can provide a suitable solution for their assistance. However, each patient has different circumstances, symptoms and skills that need assistance. This paper presents a model-driven approach for developing MASs customized for each patient. The current approach presents a metamodel for modeling Parkinson patients as models. In addition, this paper introduces a suite of model transformations that can transform a Parkinson patient model into an initial MAS model. This MAS model can be refined by designers and the programming code can be generated from this model. This approach applies the INGENIAS methodology for generating the MAS from a design model. Finally, a case study is presented as a proof of concept.

Keywords

Agent-oriented software engineering assisted living metamodel model-driven engineering multi-agent system Parkinson disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beydoun, G., Low, G., Mouratidis, H., Henderson-Sellers, B.: A security-aware metamodel for multi-agent systems (MAS). Information and Software Technology 51(5), 832–845 (2009)CrossRefGoogle Scholar
  2. 2.
    Calvillo, J., Román, I., Roa, L.: Empowering citizens with access control mechanisms to their personal health resources. International Journal of Medical Informatics 82(1), 58–72 (2013)CrossRefGoogle Scholar
  3. 3.
    García-Magariño, I., Fuentes-Fernández, R., Gómez-Sanz, J.: Guideline for the definition of EMF metamodels using an Entity-Relationship approach. Information and Software Technology 51(8), 1217–1230 (2009)CrossRefGoogle Scholar
  4. 4.
    Gascueña, J., Navarro, E., Fernández-Caballero, A.: Model-driven engineering techniques for the development of multi-agent systems. Engineering Applications of Artificial Intelligence 25(1), 159–173 (2012)CrossRefGoogle Scholar
  5. 5.
    Jenkinson, C., Dummett, S., Kelly, L., Peters, M., Dawson, J., Morley, D., Fitzpatrick, R.: The development and validation of a quality of life measure for the carers of people with Parkinsons disease (the PDQ-Carer). Parkinsonism & Related Disorders 18(5), 483–487 (2012)CrossRefGoogle Scholar
  6. 6.
    Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M., Gams, M.: An agent-based approach to care in independent living. In: de Ruyter, B., Wichert, R., Keyson, D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A. (eds.) AmI 2010. LNCS, vol. 6439, pp. 177–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Lopez, D., Blobel, B.: A development framework for semantically interoperable health information systems. International Journal of Medical Informatics 78(2), 83–103 (2009)CrossRefGoogle Scholar
  8. 8.
    Miyake, Y., Tsuboi, Y., Koyanagi, M., Fujimoto, T., Shirasawa, S., Kiyohara, C., Tanaka, K., Fukushima, W., Sasaki, S., Yamada, T., et al.: LRRK2 Gly2385Arg polymorphism, cigarette smoking, and risk of sporadic Parkinson’s disease: A case-control study in Japan. Journal of the Neurological Sciences 297(1-2), 15–18 (2010)CrossRefGoogle Scholar
  9. 9.
    Nefti, S., Manzoor, U., Manzoor, S.: Cognitive agent based intelligent warning system to monitor patients suffering from dementia using ambient assisted living. In: 2010 International Conference on Information Society (i-Society), pp. 92–97. IEEE (2010)Google Scholar
  10. 10.
    Pavón, J., Gómez-Sanz, J.: Agent oriented software engineering with INGENIAS. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 394–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Raghupathi, W., Umar, A.: Exploring a model-driven architecture (MDA) approach to health care information systems development. International Journal of Medical Informatics 77(5), 305–314 (2008)CrossRefGoogle Scholar
  12. 12.
    Silva, D., Braga, R., Reis, L., Oliveira, E.: Designing a meta-model for a generic robotic agent system using Gaia methodology. Information Sciences 195, 190–210 (2012)CrossRefGoogle Scholar
  13. 13.
    Su, C.: Mobile multi-agent based, distributed information platform (MADIP) for wide-area e-health monitoring. Computers in Industry 59(1), 55–68 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Iván García-Magariño
    • 1
  1. 1.Departamento de Ingeniería Informática y Organización Industrial, Facultad de Enseñanzas TécnicasUniversidad a Distancia de MadridCollado VillalbaSpain

Personalised recommendations