Mobile Phone-Based Fall Detectors: Ready for Real-World Scenarios?

  • Raul Igual
  • Carlos Medrano
  • Lourdes Martin
  • Inmaculada Plaza
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)


Falls are a major health problem among the elderly. The consequences of a fall can be minimized by an early detection. In this sense, there is an emerging trend towards the development of agent systems based on mobile phones for fall detection. But when a mobile phone-based fall detector is used in a real-world scenario, the specific features of the phone can affect the performance of the system. This study aims to clarify the impact of two features: the accelerometer sampling frequency and the way the mobile phone is carried. In this experimental study, 5 participants have simulated different falls and activities of daily living. Using these data, the study shows that the sampling frequency affects the performance of the detection. In the same way, when a fall detector intended to be attached at the body is carried in an external accessory, the performance of the system decreases.


Fall detection mobile phones real-world scenarios 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rubenstein, L.Z., Josephson, K.R.: Falls and their prevention in elderly people: What does the evidence show? Med. Clin. North. Am. 90(5), 807–824 (2006)Google Scholar
  2. 2.
    Masud, T., Morris, R.O.: Epidemiology of falls. Age Ageing 30(4), 3–7 (2001)CrossRefGoogle Scholar
  3. 3.
    Lane, N., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.: A survey of mobile phone sensing. IEEE Commun. Magazine 48(9), 140–150 (2010)CrossRefGoogle Scholar
  4. 4.
    O’Grady, M.J., O’Hare, G.M.P.: Mobile devices and intelligent agents - towards a new generation of applications and services. Information Sciences 171, 335–353 (2005)CrossRefGoogle Scholar
  5. 5.
    Sposaro, F., Tyson, G.: iFall: An Android application for fall monitoring and response. In: Proc. IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6119–6122 (2009)Google Scholar
  6. 6.
    Dai, J., Bai, X., Yang, Z., Shen, Z., Xuan, D.: Mobile phone-based pervasive fall detection. Personal Ubiquitous Comput. 14(7), 633–643 (2010)CrossRefGoogle Scholar
  7. 7.
    Lee, R.Y.W., Carlisle, A.J.: Detection of falls using accelerometers and mobile phone technology. Age and Ageing, 1–7 (2011)Google Scholar
  8. 8.
    Albert, M.V., Kording, K., Herrmann, M., Jayaraman, A.: Fall classification by machine learning using mobile phones. PLoS ONE 7(5), e36556 (2012)CrossRefGoogle Scholar
  9. 9.
    Martín, P., Sánchez, M., Álvarez, L., Alonso, V., Bajo, J.: Multi-Agent System for Detecting Elderly People Falls through Mobile Devices. In: Novais, P., Preuveneers, D., Corchado, J.M. (eds.) ISAmI 2011. AISC, vol. 92, pp. 93–99. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Sánchez, M., Martín, P., Álvarez, L., Alonso, V., Zato, C., Pedrero, A., Bajo, J.: A New Adaptive Algorithm for Detecting Falls through Mobile Devices. In: Corchado, J.M., Pérez, J.B., Hallenborg, K., Golinska, P., Corchuelo, R. (eds.) Trends in PAAMS. AISC, vol. 90, pp. 17–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Fang, S.H., Liang, Y.C., Chiu, K.M.: Developing a Mobile Phone-based Fall Detection Sys-tem on Android Platform. In: Proc. Computing, Communications and Applications, ComComAp, pp. 143–146 (2012)Google Scholar
  12. 12.
    Lopes, I.C., Vaidya, B., Rodrigues, J.: Towards an autonomous fall detection and alerting system on a mobile and pervasive environment. Telecommun. Syst. 1–12 (2011)Google Scholar
  13. 13.
    Noury, N., Rumeau, P., Bourke, A.K., OLaighin, G., Lundy, J.E.: A proposal for the classication and evaluation of fall detectors. IRBM 29(6), 340–349 (2008)CrossRefGoogle Scholar
  14. 14.
    O’Neill, T.W., et al.: Age and sex influences on fall characteristics. Ann. Rheum. Dis. 53, 773–775 (1994)CrossRefGoogle Scholar
  15. 15.
    Fawcett, T.: ROC graphs: Notes and practical considerations for data mining researchers. Technical Report (2003), (accessed December 2012)
  16. 16.
    Kangas, M., Konttila, A., Lindgren, P., Winblad, I., Jämsä, T.: Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait & Posture 28(2), 285–291 (2008)CrossRefGoogle Scholar
  17. 17.
    Bourke, A., O’Brien, J., Lyons, G.: Evaluation of a threshold-based triaxial accelerometer fall detection algorithm. Gait & Posture 26(2), 194–199 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Raul Igual
    • 1
  • Carlos Medrano
    • 1
  • Lourdes Martin
    • 1
  • Inmaculada Plaza
    • 1
  1. 1.R&D&I EduQTech group - Electronics Engineering Department, Escuela Universitaria Politecnica de TeruelUniversity of ZaragozaSpain

Personalised recommendations