Advertisement

Learning Objects Repository Management Using an Adaptive Quality Evaluation Multi-Agent System

  • Valentina Tabares
  • Néstor Duque
  • Demetrio Ovalle
  • Paula Rodríguez
  • Julián Moreno
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

Availability and correspondence with expectations are desired characteristics in order to guarantee the quality of Learning Objects (LOs) retrieved from LO repositories during the search process. The administrators of these repositories have the responsibility of ensuring the quality of LOs after applying their corresponding evaluation. The implementation of metrics applied on relevant characteristics of LOs is a crucial tool for LO evaluation.This paper proposes an approach that uses a Multi-Agent System (MAS) for assessing main LO characteristics, applying different methods and metrics being adjustable to different kinds of repositories by employing adaptive parser agents. By using metadata as main source of information, the metrics allow users to rate the quality of LOs and generates alarms concerning inputs that do not meet the expected values.The system developed automatically evaluates a large number of resources to facilitate the work of the repository administrators before improving or publishing the LOs into a repository federation.

Keywords

Learning objects repository management quality evaluation metrics multi-agent systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ISO 15489-1: Information and Documentation - Records Management - Part 1: General (2001)Google Scholar
  2. 2.
    Lugo Hubp, M.: El impacto de los recursos digitales en la bibliotecas. In: UNAM (ed.) Administración de Servicios de Información, p. 173 (2004)Google Scholar
  3. 3.
    Motelet, O., Baloian, N., Pino, J.A.: Learning Object Metadata and Automatic Processes: Issues and Perspectives. In: Learning Objects: Standards, Metadata, Repositories & LCMS, pp. 185–218 (2007)Google Scholar
  4. 4.
    Ochoa, X.: Learnometrics: Metrics for Learning Objects (2008)Google Scholar
  5. 5.
    Bui, Y., Park, J.: An Assessment of Metadata Quality: A Case Study of the National Science Digital Library Metadata Repository (2006)Google Scholar
  6. 6.
    Tabares, V., Duque, N., Moreno, J.: Análisis experimental de la utilidad en la recuperación de objetos de aprendizaje desde repositorios remotos, pp. 1–12 (2011)Google Scholar
  7. 7.
    Bruce, T.R., Hillmann, D.I.: The Continuum of Metadata Quality: Defining, Expressing, Exploiting. Metadata in Practice (2004)Google Scholar
  8. 8.
    Ochoa, X., Duval, E.: Automatic evaluation of metadata quality in digital repositories. International Journal on Digital Libraries 10, 67–91 (2009)Google Scholar
  9. 9.
    Margaritopoulos, T., Mavridis, I., Margaritopoulos, M., Manitsaris, A.: A Conceptual Framework for Metadata Quality Assessment. In: Proc. Int’l Conf. on Dublin Core and Metadata Applications, pp. 104–113 (2008)Google Scholar
  10. 10.
    Nichols, D., Chan, C., Bainbridge, D.: A Tool for Metadata Analysis (2008)Google Scholar
  11. 11.
    Hughes, B.: Metadata Quality Evaluation: Experience from the Open Language Archives Community. In: Chen, Z., Chen, H., Miao, Q., Fu, Y., Fox, E., Lim, E.-P. (eds.) ICADL 2004. LNCS, vol. 3334, pp. 320–329. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Duque, N.D., Chavarro, J.C., Moreno, R.: Integrando Información de Fuentes Heterogeneas Enfoques y Tendencias. Scientia et Technica XIII, 397–401 (2007)Google Scholar
  13. 13.
    Tabares, V., Rodríguez, P., Duque, N., Vicari, R., Moreno, J.: Multi-agent Model for Evaluation of Learning Objects from Repository Federations - ELO-index. Revista Respuestas, 48–54 (2012)Google Scholar
  14. 14.
    Bellifemine, F., Poggi, A., Rimassa, G.: JADE: A FIPA2000 compliant agent development environment. In: Proceedings of the Fifth International Conference on Autonomous Agents. ACM (2001)Google Scholar
  15. 15.
    UFRGS: FEB – Federação de Repositórios Educa Brasil, http://feb.ufrgs.br/
  16. 16.
    Vicari, R., Gluz, J.C., Santos, E.R., Thompsen Primo, T., Longhi, L.H., Bordignon, A., Behar, P., Passerino, L.M., Machado, R.C., Roesler, V.: Proposta de Padrão para Metadados de Objetos de Aprendizagem Multiplataforma. In: Projeto OBAA (2009)Google Scholar
  17. 17.
    Tabares, V., Rodríguez, P.A., Duque, N.: Modelo Integral de Federación de Objetos de Aprendizaje en Colombia - más que búsquedas centralizadas. In: LACLO 2012 - Séptima Conferencia Latinoamericana de Objetos y Tecnologías de Aprendizaje (2012)Google Scholar
  18. 18.
    Learning Technology Standards Committee: IEEE Standard for Learning Object Metadata. Institute of Electrical and Electronics Engineers, New York (2002)Google Scholar
  19. 19.
    Dirección Nacional de Innovación Académica: Banco de Objetos de Aprendizaje de la Universidad Nacional de Colombia, http://aplicaciones.virtual.unal.edu.co/drupal/

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valentina Tabares
    • 1
  • Néstor Duque
    • 2
  • Demetrio Ovalle
    • 1
  • Paula Rodríguez
    • 1
  • Julián Moreno
    • 1
  1. 1.Universidad Nacional de Colombia Sede MedellínColombia
  2. 2.Universidad Nacional de Colombia Sede ManizalesColombia

Personalised recommendations