Advertisement

A Semantic Web Approach to Recommend Learning Objects

  • Tiago Thompsen Primo
  • André Behr
  • Rosa Maria Vicari
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

This work explores the use of Semantic Web techniques as an alternative to traditional educational recommender systems. The proposed model explores the use of Learning Object metadata information and Student academic profile described by knowledge ontologies in order to provide a knowledge structure. This knowlege is stored in an OWL ontology providing domain knowledge and knowledge interoperability. Such ontologies can be used by Recommender Systems to provide educational material recommendations. For a common vocabulary, the core of the ontologies were described with the use of OBAA, a metadata standard that extends IEEE LOM and provides interoperability among hardware platforms to cope with the Brazilian educational context.

Keywords

Semantic Web Recommender Systems Ontology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shadbolt, N., Berners-Lee, T., Hall, W.: The semantic web revisited. IEEE Intelligent Systems 21(3), 96–101 (2006)CrossRefGoogle Scholar
  2. 2.
    Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: principles and methods. Data and Knowledge Engineering 25, 161–197 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Learning Technology Standards Committee of the IEEE: IEEE standard for learning object metadata (draft). IEEE standard 1484.12.1 (2002)Google Scholar
  4. 4.
    Laleuf, J.R., Spalter, A.M.: A component repository for learning objects: A progress report. In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL 2001, pp. 33–40. ACM, New York (2001)CrossRefGoogle Scholar
  5. 5.
    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  6. 6.
    Santos, O.C., Boticario, J.G.: Modeling recommendations for the educational domain. Procedia Computer Science 1(2), 2793–2800 (2010)CrossRefGoogle Scholar
  7. 7.
    Lee, J.W., Lee, S.G., Kim, H.J.: A probabilistic approach to semantic collaborative filtering using world knowledge. Journal of Information Science 37(1) (February 2011)Google Scholar
  8. 8.
    Klašnja-Milićević, A., Vesin, B., Ivanovic, M., Budimac, Z.: E-learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education 56(3) (April 2011)Google Scholar
  9. 9.
    Vicari, R.M., Gluz, J.C., Santos, E.R., Primo, T.T., Rossi, L.H.L., Bordignon, A., Behar, P., Passerino, L.M., Filho, R.C.M.F., Roesler, V.: Proposta de padrão para metadados de objetos de aprendizagem multiplataforma. Technical Report 01.08.0215.00, Universidade Federal do Rio Grande do Sul (UFRGS) (July 2009)Google Scholar
  10. 10.
    Bargmeyer, B.E., Gillman, D.W.: Metadata standards and metadata registries: An overview (2000)Google Scholar
  11. 11.
    Viccari, R., Gluz, J.C., Passerino, L.M., Santos, E., Primo, T., Rossi, L., Bordignon, A., Behar, P., Filho, R., Roesler, V.: The OBAA proposal for learning objects supported by agents. In: Proceedings of MASEIE Workshop – AAMAS 2010 (2010)Google Scholar
  12. 12.
    Barcelos, C.F., Gluz, J.C., Vicari, R.M.: An agent-based federated learning object search service. In: LACLO 2010 (2010)Google Scholar
  13. 13.
    IMS Global Learning Consortium, Inc.: IMS accessforall meta-data information model. Technical Report Version 1.0 Final Specification (July 2004)Google Scholar
  14. 14.
    Noy, N.F., Mcguinness, D.L.: Ontology development 101: A guide to creating your first ontology. Technical report (2001)Google Scholar
  15. 15.
    Qin, J., Finneran, C.: Ontological representation of learning objects. In: Proceedings of the Workshop on Document Search Interface Design and Intelligent Access in Large-Scale Collections, pp. 52–57. Springer (2002)Google Scholar
  16. 16.
    Gluz, J.C., Vicari, R.M.: Uma ontologia OWL para metadados IEEE-LOM, dublin-core e OBAA. In: Anais do XXII SBIE - XVII WIE, Aracaju, pp. 204–213 (November 2011) ISSN: 2176-4301Google Scholar
  17. 17.
    da Silva, J.M.C.: Análise Técnica e Pedagógica de Metadados Para Objetos de Aprendizagem. PhD in informatics in education, Universidade Federal do Rio Grande do Sul (UFRGS), CDU - 371.694:681.3 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tiago Thompsen Primo
    • 1
  • André Behr
    • 1
  • Rosa Maria Vicari
    • 1
  1. 1.Informatics InstituteFederal University of Rio Grande do SulPorto AlegreBrazil

Personalised recommendations