Analysing Facial Regions for Face Recognition Using Forensic Protocols

  • Pedro Tome
  • Ruben Vera-Rodriguez
  • Julian Fierrez
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)


This paper focuses on the analysis of automatic facial regions extraction for face recognition applications. Traditional face recognition systems compare just full face images in order to estimate the identity, here different facial areas of face images obtained from both uncontrolled and controlled environments are extracted from a person image. In this work, we study and compare the discriminative capabilities of 15 facial regions considered in forensic practice such as full face, nose, eye, eyebrow, mouth, etc. This study is of interest to biometrics because a more robust general-purpose face recognition system can be built by fusing the similarity scores obtained from the comparison of different individual parts of the face. To analyse the discriminative power of each facial region, we have randomly defined three population subsets of 200 European subjects (male, female and mixed) from MORPH database. First facial landmarks are automatically located, checked and corrected and then 15 forensic facial regions are extracted and considered for the study. In all cases, the performance of the full face (faceISOV region) is higher than the one achieved for the rest of facial regions. It is very interesting to note that the nose region has a very significant discrimination efficiency by itself and similar to the full face performance.


Forensic biometrics face recognition facial regions forensic casework 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ali, T., Tome, P., Fierrez, J., Vera-Rodriguez, R., Spreeuwers, L., Veldhuis, R.: A study of identification performance of facial regions from cctv images. In: 5th International Workshop on Computational Forensics, IWCF 2012 (2012)Google Scholar
  2. 2.
    Bonnen, K., Klare, B., Jain, A.K.: Component-based representation in automated face recognition. IEEE Transactions on Information Forensics and Security 8(1), 239–253 (2013)CrossRefGoogle Scholar
  3. 3.
    Gunes, H., Piccardi, M.: Assessing facial beauty through proportion analysis by image processing and supervised learning. International Journal of Man-Machine Studies 64(12), 1184–1199 (2006), Google Scholar
  4. 4.
    Gupta, S., Markey, M.K., Bovik, A.C.: Anthropometric 3d face recognition. Int. J. Comput. Vision 90(3), 331–349 (2010)CrossRefGoogle Scholar
  5. 5.
    Heisele, B., Serre, T., Poggio, T.: A component-based framework for face detection and identification. Int. J. Computer Vision 74(2), 167–181 (2007),, doi:10.1007/s11263-006-0006-zCrossRefGoogle Scholar
  6. 6.
    ISO/IEC JTC 1/SC 37 N 504: Biometric data interchange formats part 5: Face image. International Organization for Standardization (2004)Google Scholar
  7. 7.
    Jain, A.K., Klare, B., Park, U.: Face recognition: Some challenges in forensics. In: FG, pp. 726–733. IEEE (2011)Google Scholar
  8. 8.
    Jain, A.K., Klare, B., Park, U.: Face matching and retrieval in forensics applications. IEEE MultiMedia 19(1), 20 (2012)CrossRefGoogle Scholar
  9. 9.
    Jain, A.K., Ross, A.A., Nandakumar, K.: Introduction to Biometrics. Springer Science+Business Media, LLC (2011),
  10. 10.
    Jefferson, Y.: Facial beauty-establishing a universal standard. IJO 15(1), 9 (2004)Google Scholar
  11. 11.
    Li, F., Wechsler, H., Tistarelli, M.: Robust fusion using boosting and transduction for component-based face recognition. In: Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, Hanoi, Vietnam, December 17-20, pp. 434–439. IEEE (2008),
  12. 12.
    Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition, 2nd edn. Springer (2011)Google Scholar
  13. 13.
    Meuwly, D., Veldhuis, R.: Forensic biometrics: From two communities to one discipline. In: 2012 BIOSIG - Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG), pp. 1–12 (2012)Google Scholar
  14. 14.
    Netherlands Forensic Institute (NFI):
  15. 15.
  16. 16.
    Ocegueda, O., Shah, S.K., Kakadiaris, I.A.: Which parts of the face give out your identity? In: CVPR, pp. 641–648. IEEE (2011),
  17. 17.
    Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: 7th International Conference on Automatic Face and Gesture Recognition, FGR 2006, pp. 341–345 (2006), doi:10.1109/FGR.2006.78Google Scholar
  18. 18.
    Spanish Guardia Civil (DGGC):
  19. 19.
    Tistarelli, M.: Active/space-variant object recognition. Image and Vision Computing 13(3), 215–226 (1995), doi: CrossRefGoogle Scholar
  20. 20.
    Tome, P., Fierrez, J., Fairhurst, M.C., Ortega-Garcia, J.: Acquisition scenario analysis for face recognition at a distance. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Chung, R., Hammoud, R., Hussain, M., Kar-Han, T., Crawfis, R., Thalmann, D., Kao, D., Avila, L. (eds.) ISVC 2010, Part I. LNCS, vol. 6453, pp. 461–468. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Tome, P., Vera-Rodriguez, R., Fierrez, J., Ortega-García, J.: Variability compensation using NAP for unconstrained face recognition. In: Omatu, S., Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 151, pp. 129–139. Springer, Heidelberg (2012), doi: CrossRefGoogle Scholar
  22. 22.
    Zhang, X., Gao, Y.: Face recognition across pose: A review. Pattern Recognition, 2876–2896 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pedro Tome
    • 1
  • Ruben Vera-Rodriguez
    • 1
  • Julian Fierrez
    • 1
  1. 1.Biometric Recognition Group - ATVS, Escuela Politecnica SuperiorUniversidad Autonoma de MadridSpain

Personalised recommendations