Recommending POIs Based on the User’s Context and Intentions

  • Hernani Costa
  • Barbara Furtado
  • Durval Pires
  • Luis Macedo
  • Amilcar Cardoso
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)


This paper describes a Recommender System that implements a Multiagent System for making personalised context and intention-aware recommendations of Points of Interest (POIs). A two-parted agent architecture was used, with an agent responsible for gathering POIs from a location-based service, and a set of Personal Assistant Agents (PAAs) collecting information about the context and intentions of its respective user. In each PAA were embedded four Machine Learning algorithms, with the purpose of ascertaining how well-suited these classifiers are for filtering irrelevant POIs, in a completely automatic fashion. Supervised, incremental learning occurs when the feedback on the true relevance of each recommendation is given by the user to his PAA. To evaluate the recommendations’ accuracy, we performed an experiment considering three types of users, using different contexts and intentions. As a result, all the PAA had high accuracy, revealing in specific situations F 1 scores higher than 87%.


information overload machine learning algorithms multiagent systems personal assistant agents recommender systems user modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Setten, M., Pokraev, S., Koolwaaij, J.: Context-Aware Recommendations in the Mobile Tourist Application COMPASS. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Biancalana, C., Flamini, A., Gasparetti, F., Micarelli, A., Millevolte, S., Sansonetti, G.: Enhancing Traditional Local Search Recommendations with Context-Awareness. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 335–340. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Balabanović, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  4. 4.
    van Meteren, W., van Someren, M.: Using Content-Based Filtering for Recommendation. In: ECML/MLNET, Workshop on ML and the New Information Age, Barcelona, Spain, pp. 47–56 (2000)Google Scholar
  5. 5.
    Melville, P., Mooney, R.J., Nagarajan, R.: Content-Boosted Collaborative Filtering for Improved Recommendations. In: 18th National Conf. on AI, pp. 187–192. AAAI, CA (2002)Google Scholar
  6. 6.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: GroupLens: applying collaborative filtering to Usenet news. Commun. ACM 40(3), 77–87 (1997)CrossRefGoogle Scholar
  7. 7.
    Billsus, D., Pazzani, M.J.: Learning Collaborative Information Filters. In: 15th Int. Conf. on Machine Learning, pp. 46–54. Morgan Kaufmann, San Francisco (1998)Google Scholar
  8. 8.
    Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: 16th Int. Conf. on World Wide Web, pp. 271–280. ACM, NY (2007)CrossRefGoogle Scholar
  9. 9.
    Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile hosts. IEEE Network 8(5), 22–32 (1994)CrossRefGoogle Scholar
  10. 10.
    Costa, H., Furtado, B., Pires, D., Macedo, L., Cardoso, A.: Context and Intention-Awareness in POIs Recommender Systems. In: 6th ACM Conf. on Recommender Systems (RecSys 2012), 4th Workshop on Context-Aware Recommender Systems (CARS 2012). ACM (2012)Google Scholar
  11. 11.
    Woerndl, W., Eigner, R.: Collaborative, Context-Aware Applications for Inter-networked Cars. In: 16th IEEE Int. Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 180–185. IEEE, DC (2007)CrossRefGoogle Scholar
  12. 12.
    Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-Aware Recommender Systems. AI Magazine 32(3), 67–80 (2011)Google Scholar
  13. 13.
    Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context Relevance Assessment and Exploitation in Mobile Recommender Systems. Personal and Ubiquitous Computing, 1–20 (2011)Google Scholar
  14. 14.
    Huang, H., Gartner, G.: Using Context-Aware Collaborative Filtering for POI Recommendations in Mobile Guides. In: Advances in Location-Based Services. Lecture in Geoinformation and Cartography, pp. 131–147. Springer, Vienna (2012)CrossRefGoogle Scholar
  15. 15.
    Costa, H., Macedo, L.: Emotion-Based Recommender System for Overcoming the Problem of Information Overload. In: Corchado, J.M., Bajo, J., Kozlak, J., Pawlewski, P., Molina, J.M., Julian, V., Silveira, R.A., Unland, R., Giroux, S. (eds.) PAAMS 2013 Workshops. CCIS, vol. 365, pp. 178–189. Springer, Heidelberg (2013)Google Scholar
  16. 16.
    Macedo, L.: Selecting Information based on Artificial Forms of Selective Attention. In: 19th European Conference on Artificial Intelligence (ECAI 2010), pp. 1053–1054. IOS Press (2010)Google Scholar
  17. 17.
    Costa, H.: A Multiagent System Approach for Emotion-based Recommender Systems. PhD proposal, University of Coimbra, Coimbra, Portugal (2012)Google Scholar
  18. 18.
    Schein, A., Popescul, A., Ungar, L., Pennock, D.: Methods and Metrics for Cold-Start Recommendations. In: 25th Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, pp. 253–260. ACM, NY (2002)Google Scholar
  19. 19.
    Refaeilzadeh, P., Tang, L., Liu, H.: Cross-Validation. In: Encyclopedia of Database Systems, pp. 532–538. Springer (2009)Google Scholar
  20. 20.
    Macedo, L.: A Surprise-based Selective Attention Agent for Travel Information. In: 9th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2010), 6th Workshop on Agents in Traffic and Transportation (ATT 2010), pp. 111–120 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hernani Costa
    • 1
  • Barbara Furtado
    • 1
  • Durval Pires
    • 1
  • Luis Macedo
    • 1
  • Amilcar Cardoso
    • 1
  1. 1.CISUCUniversity of CoimbraPortugal

Personalised recommendations