Advertisement

Comparing Agent Interactions of Distributed and Centralized Multi-Agent Systems for Context-Aware Domains

  • Javier Carbo
  • Nayat Sanchez-Pi
  • David Griol
  • Jose M. Molina
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

Comparing the communication overhead of Multi-Agent Systems (MAS) is a complex problem and it does not have a single form. Distributed architectures of MAS are assumed to have greater robustness than centralized approaches. But the corresponding cost in terms of agents interactions is not often quantified in order to fairly evaluate the relative benefits of them. The present work focuses on evaluating interaction relevance (measured through the involved concepts and produced reactions). So, in this paper, we describe the assignment of evaluation values to agents interaction of a distributed and a centralized specific MAS architectures applied to the same context-aware domain. Due to the dependant nature of the relevance of the messages, the evaluation had to be adhoc, but here we provide an example of how interesting is this alternative in order to evaluate any MAS architecture theoretically.

Keywords

Multi-Agent Systems Evaluation Context-Aware Architectures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidsson, P., Johansson, S., Svahnberg, M.: Characterization and evaluation of multi-agent system architectural styles. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914, pp. 179–188. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Mylopoulos, J., Kolp, M., Giorgini, P.: Agent-oriented software development. In: Vlahavas, I.P., Spyropoulos, C.D. (eds.) SETN 2002. LNCS (LNAI), vol. 2308, pp. 3–17. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Giunchiglia, F., Mylopoulos, J., Perini, A.: The tropos software development methodology: Processes, models and diagrams. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 63–74. ACM Press (2002)Google Scholar
  4. 4.
    Joumaa, H., Demazeau, Y., Vincent, J.: Evaluation of multi-agent systems: The case of interaction. In: 3rd International Conference on Information and Communication Technologies: From Theory to Applications, pp. 1–6. IEEE (2008)Google Scholar
  5. 5.
    Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: The state of the art. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 1–28. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Sánchez-Pi, N., Fuentes, V., Carbó, J., Molina, J.M.: Knowledge-based system to define context in commercial applications. In: Proc. of the 8th ACIS Conference SNPD 2007, Tsingtao, China, pp. 694–699 (2007)Google Scholar
  7. 7.
    Gaspar, G.: Communication and belief changes in a society of agents: Towards a formal model of autonomous agent. In: Descentralized A. I. 2, pp. 245–255. Elsevier Science, Amsterdam (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Javier Carbo
    • 1
  • Nayat Sanchez-Pi
    • 2
  • David Griol
    • 1
  • Jose M. Molina
    • 1
  1. 1.Group of Applied Artificial Intelligence (GIAA)Carlos III University of MadridColmenarejoSpain
  2. 2.Documentation Active & Intelligent Design Laboratory of Institute of Computing (ADDLabs)Fluminense Federal UniversityNiteriBrazil

Personalised recommendations