Advertisement

Characterization of the Radio Propagation Channel in a Real Scenario

  • María Jesús Algar
  • Iván González
  • Lorena Lozano
  • Felipe Cátedra
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 365)

Abstract

The main goal of this paper is to characterize the radio channel propagation model of studying the impulse response. The observation points have been located along two different areas in the city of Madrid, to analyse LOS and NLOS paths. In order to obtain accurate results the geometry has been modelled with NURBS surfaces, since these allow us to obtain very accurate models of real objects. To perform this work, a deterministic electromagnetic (EM) simulation tool, called NEWFASANT, has been used. This tool is able to achieve this goal applying the Geometrical Theory of Diffraction and taken into account multiple reflections and diffractions between the buildings.

Keywords

channel model impulse response GTD radio localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hata, M.: Empirical Formula for Propagation Loss in Land Mobile Radio Services. IEEE Transactions on Vehicular Technology VT-29, 317–325 (1980)CrossRefGoogle Scholar
  2. 2.
    Cox, D.C.: Multipath Delay Spread and Path Loss Correlation for 910 MHz Urban Mobile Radio Propagation. IEEE Transactions on Vehicular Technology VT-26, 340–344 (1977)CrossRefGoogle Scholar
  3. 3.
    NewFasant EM Emulation Software, http://www.fasant.com/
  4. 4.
    Pathak, P.H.: Techniques for high frequency problems. In: Lo, Y.T., Lee, S.W. (eds.) Antenna Handbook, Theory, Application and Design. Van Nostrand Reinhold, New York (1988)Google Scholar
  5. 5.
    Delgado, C., García, E., González, I., Hernández, L., Cátedra, F.: A comparison of the Computational Resources Required by a Domain Decomposition Approach and Other Efficient Numerical Techniques Based on the Moment Method. In: 6th European Conference on Antennas and Propagation, Prague, Czech, pp. 278–282 (2012)Google Scholar
  6. 6.
    García, E., Delgado, C., González, I., Moreno, J., Cátedra, F.: Computational Efficient iterative solution of problems using Characteristic Basis Function Method combines with Multilevel Fast Multipole Algorithm. In: 6th European Conference on Antennas and Propagation, Prague, Czech, pp. 211–214 (2012)Google Scholar
  7. 7.
    Cátedra, F., Lozano, L., González, I., García, E., Algar, M.J.: Efficient Techniques for Accelerating the Ray-Tracing for Computing the Multiple Bounce Scattering of Complex Bodies Modeled by Flat Facet. Applied Computational Electromagnetics Society Journal 25(5), 395–409 (2010)Google Scholar
  8. 8.
    Lozano, L., Algar, M.J., González, I., Cátedra, F.: FASANT: A Versatile Tool to Analyze Radio Localization System at Indoor or Outdoor Environments. In: de Leon F. de Carvalho, A.P., Rodríguez-González, S., De Paz Santana, J.F., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 79, pp. 259–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Delgado, C., Lozano, L., Gutiérrez, O., Cátedra, F.: Iterative PO Method based on Currents Modes and Angular Z-Buffer Technique. In: 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, pp. 1853–1856 (2006)Google Scholar
  10. 10.
    Lozano, L., Algar, M.J., González, I., Cátedra, F.: FASANT: A versatile tool to analyse antennas and propagation in complex environments. In: 3rd European Conference on Antennas and Propagation, Berlin, March 23-27, pp. 2088–2092 (2009)Google Scholar
  11. 11.
    Farin, G.: Curves and surfaces for computer aided geometric design. Academic Press (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • María Jesús Algar
    • 1
  • Iván González
    • 1
  • Lorena Lozano
    • 1
  • Felipe Cátedra
    • 1
  1. 1.Dept. Ciencias de la ComputaciónUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations